

Janick Bernet

Dominik Käser

Christian Oberholzer

29.05.2009

Game Notebook
Magmageddon

2

TABLE OF CONTENTS

Table of Contents 2

Part 1 – Formal Game Proposal 5

Intro.. 5

Informal Description .. 5

Overview .. 5

Game elements .. 5

Concept Sketches ... 8

Formal Requirements .. 12

General ... 12

GUI AND HUD ... 12

Lava .. 12

Pillars .. 12

Floating Islands .. 13

Player ... 13

Development Schedule .. 14

Deliverables.. 15

Milestones .. 16

Task Assignments and Work Estimation .. 17

Development Timetable .. 19

Assessment .. 20

Part 2 – Prototype 22

Gameplay Screenshots ... 23

Findings .. 24

Positioning ... 24

Player movement ... 24

Island Travel ... 25

Parameter Tuning .. 25

Part 3 – Interim Report 26

Week 1: Functional Minimum .. 26

Changes .. 26

achievements ... 26

Problems .. 26

The Product .. 26

Week 2: Low Target Part 1 ... 27

 3

Changes .. 27

achievements ... 27

Problems .. 27

Screenshots .. 28

Production Example - Collision Detection ... 30

Overview .. 30

Broad Phase ... 30

Collision Volumes ... 30

Production Example –Creating Lava Surfaces .. 31

First Approach: Lava planes ... 31

Going beyond planes: Parallax Occlusion Mapping ... 32

Part 4 – Alpha Release 35

The Product .. 35

Changes .. 35

Achievements... 35

Problems .. 36

Production Examples ... 36

Environment .. 36

HUD .. 37

Animations ... 37

Multithreading ... 38

Particles .. 39

Part 5 – Playtesting 41

Participants .. 41

Test sessions .. 41

Questions Asked .. 41

Play Matrix ... 41

Overall Concept Comprehension ... 42

OVERALL IMPLEMENTATION Questions .. 43

Specific Implementation Questions ... 44

sample question sheet ... 46

Our own observations during the testing sessions .. 46

Conclusions .. 47

Impressions .. 48

4

Part 6 – Conclusion 50

The Product .. 50

Changes .. 50

Features ... 51

The Feel .. 51

Statistics ... 52

Conclusion .. 53

Overall .. 53

Janick Bernet .. 53

Dominik Käser .. 54

Christian Oberholzer .. 54

Screenshots .. 55

 5

PART 1 – FORMAL GAME PROPOSAL

INTRO

For reasons still being researched, volcanoes started to appear all over Antarctica, flushing

resources of unprecedented value onto the earth's surface. Although the resources legally

belong to the state of Antarctica, the immense value of said resources led other fractions to

claim ownership. Day after day, new gatherers arrived, trying to capture as much as they

could. As the situation got out of control, the world union decided to legally distribute the

resources all over the planet. In a time of great decadence it was decided that shares shall

be dispensed based on the outcomes of deadly robot-matches inside the volcanoes. Since

then, engineers all over the world have constantly been working on improving their robots

in order to be able to explore and to claim the deadly depths of Antarctica's volcanoes.

INFORMAL DESCRIPTION

OVERVIEW

The game features 2-4 players competing against each other (mainly in death match, but

other modes such as control point or capture-the-flag are also conceivable) on one screen,

viewed from a fixed angle (no scrolling, but automatic zoom has to be tested). The screen

wraps around: if a player leaves to the right he will enter from the left and vice versa.

The competition takes place around a lake of lava. Large pillars stick out of the lava into the

sky. Between the pillars, there are islands hovering on different heights. The players can

stand on these islands, change the paths of the islands and go from one island to another.

Islands can collide with each other and pillars, which can result in islands and/or pillars

falling down and taking other objects with them. When a player stands on an island, it will

slowly lose height because of the added weight. If a player leaves the island before it

eventually sinks into the lava, it hovers back to its original position. Sunken islands can be

replaced by new ones using a ray of cold water. Periodically, eruptions from the lava in the

form of fireballs will appear and hurt players if they get hit.

GAME ELEMENTS

ENVIRONMENT

The game environment consists of a rectangular field where all the action takes place. The

borders wrap around, meaning that everything disappearing on one side reappears on the

other side. This battle ground basically consists of the following three different elements:

 A sea of lava covers the ground and is - of course - deadly to the players

 Rock pillars of different sizes stick out of the lava

 Rock islands hover on a specific height above the field of lava.

6

A more precise definition of these elements follows.

PILLARS

Pillars just stick out of the lava. Islands can collide with them and tilt them over. When a
pillar falls, it can take other pillars or islands with it. On the top, the pillars are covered in
ice which is constantly melting – therefore, water runs down along the pillars.

HOVERING ISLANDS

Islands hover on a specific height (Y axis) on a specific path between the pillars. When

islands collide with each other or pillars, they are only deflected from their path on the XZ

plane and never leave their fixed position on the Y axis. Players can stand on islands, but

they will slowly lose height and eventually melt in the lava below. Islands are covered by

grass and other flora. Islands in the upper heights can also be covered in ice.

PLAYER CHARACTERS

Players control characters, which have a certain amount of health and energy. A player can

move between the islands and attack other players. While melee attack is free, energy is

consumed if a player performs some special attack (see Indirect combat (Chicken tactics)).

Health is deduced when a player gets hit by another players attack. If a player’s health is

zero or below, he dies and loses. A player also dies when falling into the lava.

POWER-UPS

Simple power ups for health and energy are distributed over the islands. They will

randomly re-appear if collected.

PLAYER INTERACTIONS

Every player can perform the following actions without using any finite resource:

WALKING (BORING BUT NECESSARY)

Players can walk around the islands, though they cannot fall from them just by walking.

COLLECT POWER-UPS (RED BULL GIVES YOU WINGS!)

If a player gets in contact with a power-up he can collect it and will receive the power

accordingly.

ISLAND ATTRACTION (USE THE FORCE, LUKE)

Islands can be attracted using some fancy force which makes them slowly move towards

the island the player is standing on, so he can switch to the other island.

 7

ISLAND JUMP (UP AND AT THEM)

The player can activate his jet pack for a very short amount of time which allows him to go

from one island to another.

ISLAND REPULSION (GASSY EMISSION)

The player can change the path of an island either temporarily or completely. He does so by
grasping the island and emits a burst of air using his jet pack.

DIRECT COMBAT (MANO-A-MANO)

Every player has a melee attack ability which costs no energy. A melee attack will both

deduce health from his enemy as well as physically push the opponent away from the

attacker. The latter one can be exploited to push an opponent over the edge of an island.

Furthermore, every player has energy as a resource. Energy will recharge itself with time

and can be used to perform the following actions:

INDIRECT COMBAT (CHICKEN TACTICS)

A player has various means of indirect combat in the form of special abilities:

 Ice spike: The player can specify a direction in which, subsequently, a spike is sent

off. If the spike hits an enemy, he will get hurt and frozen for a short period. If the

spike hits lava, an island will be created.

 Snow storm: The player can specify a point in range; a cloud will appear and start

snowing on the creatures below it, causing damage.

 Fire wall: The player can lighten up a fire on the floor which will remain there for a

fixed amount of time. Players stepping on the fire will be hurt.

 Small robot spawning (aka binary fission): The player can spawn a robot on the

current island which will be there for a fixed amount of time and attack all enemies

stepping on the island.

8

CONCEPT SKETCHES

TYPICAL IN-GAME SITUATION

On this image one sees:

 4 pillars

 3 Islands floating, two of them on the same height

 Estimated collision point between the green and the brown island. After the

collision, they will change their movement direction.

 Players are visualized by rectangles. Player 1 sits on the brown island waiting to

shoot at player 2. Player two on the other hand flees from the crash onto the blue

island.

 9

VISUAL IMPRESSION

How the game could look when it is done.

10

PERSPECTIVE STUDIES

An alternate view angle of 18 degrees. It is
difficult here to navigate in the XZ plane.

An alternate tilt angle of 38 degrees. The
notion of height is difficult to grasp here.

We deemed this view to be optimal in both perspective (f=21) and tilt angle (26 degrees).

An alternate perspective, f=21. The distortion
is too large, players would stay in the front.

A more orthographic perspective, f=71.
There is no dramatics, the look and feel is
too static.

 11

MODEL ANIMATION STATES

ROBOT MODELS

We particularly like the look and feel of this robot we found on the

web. The head is over proportional to the body which yields a more

comic look and feel. We might want to go for a longer head to

make it look more aggressive, though.

A concept of little prop robots which are

spawned on islands to make an island

hostile (high target).

A finite state automata model of

player animations. Colors

denote priorities of realization

(green is high, red is low).

Outlined states denote looping

animations.

12

FORMAL REQUIREMENTS

GENERAL

ID Requirement Description

ReqG01 Basic Camera The basic camera captures the scene from a predefined position. The
whole game area is always visible.

ReqG02 Advanced
Camera

The camera films the scene from a varying position. It always films
from the same side, but height an zoom may vary depending on the
optimal setting.

ReqG03 Basic Software
Framework

Setting up a generic framework that is expandable, embeds the game
logic, graphics and similar. The framework should be built as much on
XNA as possible. But still every new feature should be addable as a
separate component.

ReqG04 HDR Rendering Setting up the renderer to render with high definition textures and
effects. This feature significantly improves the visual appearance of
the game.

ReqG05 Shadow
Rendering

Rendering the scene with shadows using a state-of-the art technique.

ReqG06 Statistics Keep track about players win and looses, their longest live, their
fastest kill and their fastest death.

GUI AND HUD

ID Requirement Description

ReqUI01 Start Screen There is a start screen from where one can start a new game and
view the high score.

ReqUI02 High Score The high score features statistics (defined in Req06) about past
games.

ReqUI03 Text Input Text can be entered using the controller.

ReqUI04 Player Selection Players can select their desired character and enter their name.

ReqUI05 Map Selection The first player can select a map to play in.

ReqUI06 Simple HUD A HUD showing each players health and energy has to be available.

ReqUI07 Fancy HUD A beautifully designed HUD that nicely integrates with the game
environment has to be available.

ReqUI08 Intro An intro explains the game’s background story.

LAVA

ID Requirement Description

ReqL01 Lava Ground The ground is covered by lava. This requirement represents the
game-logic of the lava.

ReqL02 Basic Lava Effect A basic effect to render the lava lake. A basic red rectangle is enough
for a first prototype.

ReqL03 Polished Lava
Effect

A polished and nice effect to render the lava lake. This includes
advanced shaders.

ReqL04 Deadly Lava If the player gets into contact with the lava he dies.

ReqL05 Fire Eruptions At random there are fire eruptions emerging from the lake.

ReqL06 Harmful Fire
Eruptions

If such a fire eruption hits a player he endures damage or dies. If the
eruption hits an island it throws the island off its course.

PILLARS

ID Requirement Description

ReqPi01 Pillars Pillars of different sizes stick out of the lava. This requirement

 13

represents the need to model pillars with respect to in-game logic.

ReqPi02 Basic Pillar
Rendering

There is some model representing pillars which stick out of the lava.

ReqPi03 Sophisticated
Pillar Rendering

Realistically rendered pillars stick out of the lava.

ReqPi04 Tilt Pillars Pillars can be tilt over by islands. The resulting fall can affect other
islands and pillars.

ReqPi05 Icy Pillars Pillars have a top consisting of ice, which melts to water that runs
down the pillar and drops into the lava.

FLOATING ISLANDS

ID Requirement Description

ReqI01 Floating Islands Initially there is a set of floating islands of rock. The islands hover
above the lake of lava in different heights.

ReqI02 Basic Island
Rendering

A basic rendering such that the islands are visible and useable inside
a game.

ReqI03 Sophisticated
Island Rendering

A polished and nice effect to render the islands.

ReqI04 Moving Floating
Islands

Islands have the ability to move. They move with a given velocity.

ReqI05 Crashing Islands If an island crashes into another island the collision will be resolved
according to physics. The resulting movement should be locked onto
the x/z plane the resulting rotation only respective to the y-axis.

ReqI06 Islands and Pillars If an island crashes into a pillar the collision will be resolved
according to physics. The resulting movement should be locked onto
the x/z plane the resulting rotation only respective to the y-axis.

ReqI07 Sinking Islands If a player stands on an island it will lose height.

ReqI08 Rising Islands If the island does not carry the player it regains its original height.

ReqI09 Melting Islands If an island gets into contact with lava it melts.

ReqI10 Destructible
Islands

If an island takes enough damage, either by a players special ability
or by falling pillars it will fall apart.

ReqI11 Icy Islands Islands hovering above a specific height are slightly or fully covered in
ice.

ReqI12 Power-Ups Power-Ups are lying on the islands.

ReqI13 Power-Up Re-
spawn

Power-Ups re-spawn if consumed on a random island

ReqI14 Island Health
Indication

If islands are being destroyed by heat the progress of destruction
shall be indicated by an increasing glow.

PLAYER

ID Requirement Description

ReqP01 Player The player has to be represented within the game-logic.

ReqP02 Basic Player
Model

A model for the player is available.

ReqP03 Sophisticated
Player Model

A realistic model for the player is available.

ReqP04 Island Attraction A player can use attract an island so it floats to the side of the island
the player is standing on. As soon as the island is not attracted
anymore, it hovers back to its original position.

ReqP05 Island Walking The player can walk to an island he attracted.

ReqP06 Island Jumping A player can use the jetpack to move from one island to another.

ReqP07 Island Repulsion A player can use the jetpack to emit bursts of air which will for a
short period of time get an island to drift off its original course. If it

14

collides with a pillar it could change its course completely.

ReqP08 Direct Combat 1 Every player has a melee attack ability which costs no energy. This
will deduce health from his enemy.

ReqP09 Direct Combat 2 A realistic attack animation is displayed.

ReqP10 Direct Combat 3 Melee attacks will also physically push the opponent away from the
attacker.

ReqP11 Energy Every player has an energy bar which is displayed in the UI. Energy
will recharge itself with time. Every used skill will use a fixed amount
of energy.

ReqP12 Ice Spike The player can specify a direction in which, subsequently, a spike is
sent off. If the spike hits an enemy, he will get hurt and frozen for a
short period.

ReqP13 Flame Thrower
Damage

The player can use a flame thrower to cause damage to another
player.

ReqP14 Flame Thrower
Island
Destruction

The player can use a flame thrower to target and destroy islands.

ReqP15 Building Islands
with Ice Spikes

If the spike hits a rising fire ball, an island will be built.

ReqP16 Snow storm The player can specify a point in range, a cloud will appear and start
snowing on the creatures below it, causing damage.

ReqP17 Fire Wall The player can lighten up a fire on the floor which will remain there
for a fixed amount of time. Players stepping on the fire will be hurt.

ReqP18 Small Robot
Spawning

The player can spawn a robot on the current island which will be
there for a fixed amount of time and attack all enemies stepping on
the island.

ReqP19 Aiming Aids Visual aids for helping the player aim (during ranged combat or
islands jumping) shall be implemented to simplify controlling a
player.

ReqP20 Collecting
Power-Ups

Players can collect power-ups and get their respective bonuses.

ReqP21 Slow Indication If a player has been slowed, this state shall be indicated graphically.

DEVELOPMENT SCHEDULE

The development shall be divided into consecutive layers. All of the requirements defined

under are classified and assigned to one of them. Those layers are:

1. Prototype: The prototype serves to play test the central game-logic and contains

only the most minimal graphical features needed to represent the game state. If

any feature is removed from this part the prototype will degrade from a game into

a technical prototype.

2. Functional minimum: This first layer contains the set of requirements minimally

required to play the game and also some first simple visuals. The functional

minimum is the first milestone.

3. Low target: The low target is the second layer and also a milestone. Though it

contains more features than the bare minimum, it is still essentially not what

should be achieved during the timeframe of fourteen weeks. Still it will serve as a

good indicator if the development is still inside the timeframe laid out in this

chapter.

4. Desirable target: This layer and milestone is what the project aims at. It contains all

the requirements that make up a well polished and fun to play game.

 15

5. High target: The high target contains additional features that will make it into the

final deliverable if the team has some free time to implement them. There is no

milestone defined for it. After finishing the Desirable Target it will be decided

which features of this target will make it into the gold version milestone.

6. Extras: This part of the schedule defines some additions to the game that would be

fun but are not realistic to achieve. However in a future project they could be

added.

The layers then are assigned to milestones to be reached on a specific date. Those

milestones contain a detailed timetable determining when each requirement will be

implemented and who is responsible for the implementation. This timetable shall be filled

out iteratively during the projects development.

DELIVERABLES

PROTOTYPE

ID Requirement

ReqG01 Basic Camera

ReqG03 Basic Software Framework

ReqL01 Lava Ground

ReqL02 Basic Lava Effect

ReqL04 Deadly Lava

ReqPi01 Pillars

ReqPi02 Basic Pillar Rendering

ReqI01 Floating Islands

ReqI02 Basic Island Rendering

ReqI04 Moving Floating Islands

ReqP01 Player

ReqP02 Basic Player Model

ReqP06 Island Jumping

ReqP08 Direct Combat 1

ReqP10 Direct Combat 3

ReqP12 Ice Spike

ReqI12 Power-Ups

ReqP20 Collecting Power-Ups

FUNCTIONAL MINIMUM

ID Requirement

ReqI05 Crashing Islands

ReqI06 Islands and Pillars

ReqP09 Direct Combat 2

ReqI07 Sinking Islands

ReqI08 Rising Islands

ReqP13 Flame Thrower Damage

ReqP14 Flame Thrower Island Destruction

ReqP11 Energy

ReqUI06 Simple HUD

ReqP19 Aiming Aids

ReqG05 Shadow Rendering

16

LOW TARGET

ID Requirement

ReqL03 Polished Lava Effect

ReqPi03 Sophisticated Pillar Rendering

ReqI03 Sophisticated Island Rendering

ReqP03 Sophisticated Player Model (may be moved)

ReqUI04 Player Selection

ReqUI07 Fancy HUD

ReqI14 Island Health Indication

ReqP21 Slow Indication

ReqP04 Island Attraction

ReqP05 Island Walking

ReqI13 Power-Up Re-spawn

DESIRABLE TARGET

ID Requirement

ReqP07 Island Repulsion

ReqUI01 Start Screen

ReqUI05 Map Selection

HIGH TARGET

ID Requirement

ReqG04 HDR Rendering

ReqL05 Lava Eruptions

ReqL06 Harmful Fire Eruptions

ReqPi04 Tilt Pillars

ReqPi05 Icy pillars

ReqI09 Melting Islands

ReqP15 Building Islands with Ice Spikes

ReqUI08 Intro

ReqG06 Statistics

ReqUI03 Text Input

ReqUI02 High Score

ReqG02 Advanced Camera

EXTRAS

ID Requirement

ReqI10 Destructible Islands

ReqP16 Snow Storm

ReqP17 Fire Wall

ReqP18 Small Robot Spawning

ReqI11 Icy Islands

MILESTONES

ID Milestone Description Due Date

MS01 Prototype
Chapter Written

With this milestone the prototype chapter must have
been written and added to the game notebook.
Everyone in the team should also have installed and
experimented with XNA in order to be ready for

March 16,
5pm

 17

development.

Additionally a game prototype according to the
prototype specification has been created.

MS02 Functional
Minimum

With this milestone the functional minimum must be
implemented, working and tested.

March 23,
12pm

MS03 Interim Report
Written

With this milestone the chapter with the interim report
must have been written and added to the game
notebook.

April 6,
5pm

MS04 Low Target With this milestone the low target shall be hit. April 13,
12pm

MS05 Desirable Target With this milestone the team must have fulfilled the
requirements for the desirable target. The prototype
must be tested and in presentable order since it is
needed for play testing in the week after.

May 4,
12pm

MS06 Play test Chapter
Written

With this milestone the play test chapter must have
been written and added to the game notebook. This
concludes that to this date all the play testing must be
done.

May 11,
5pm

MS07 Gold Version With this milestone the development must have been
concluded. All testing must have been finished and
some of the high target functionality should be
implemented.

May 25,
12pm

MS08 Conclusion and
Presentation

With this milestone the conclusion chapter must have
been written and added to the game notebook. In
addition the public presentation of the game must be
ready to be held.

May 29,
5pm

TASK ASSIGNMENTS AND WORK ESTIMATION

PROTOTYPE

ID Requirement Assignee Work Estimate

ReqG01 Basic Camera cob 2h

ReqG03 Basic Software Framework cob 8h

ReqL01 Lava Ground jab 3h

ReqL02 Basic Lava Effect cob 2h

ReqL04 Deadly Lava jab 3h

ReqPi01 Pillars cob 3h

ReqPi02 Basic Pillar Rendering cob 2h

ReqI01 Floating Islands jab 2h

ReqI02 Basic Island Rendering dpk 4h

ReqI04 Moving Floating Islands jab 4h

ReqP01 Player dpk 10h

ReqP02 Basic Player Model jab 4h

ReqP06 Island Jumping jab 4h

ReqP08 Direct Combat 1 jab 1h

ReqP10 Direct Combat 3 jab 2h

ReqP12 Ice Spike jab 3h

ReqI12 Power-Ups cob 2h

ReqP20 Collecting Power-Ups cob 1h

FUNCTIONAL MINIMUM

ID Requirement Assignee Work Estimate

18

ReqI05 Crashing Islands cob tbd

ReqI06 Islands and Pillars cob tbd

ReqP09 Direct Combat 2 jab tbd

ReqI07 Sinking Islands dpk tbd

ReqI08 Rising Islands dpk tbd

ReqP13 Flame Thrower Damage jab tbd

ReqP14 Flame Thrower Island Destruction cob tbd

ReqP11 Energy jab tbd

ReqUI06 Simple HUD jab tbd

ReqP19 Aiming Aids dpk 8h

LOW TARGET

ID Requirement Assignee Work Estimate

ReqL03 Polished Lava Effect dpk

ReqPi03 Sophisticated Pillar Rendering dpk

ReqI03 Sophisticated Island Rendering dpk

ReqP03 Sophisticated Player Model

ReqUI04 Player Selection jab 3h

ReqUI07 Fancy HUD jab 3h

ReqI14 Island Health Indication cob

ReqP21 Slow Indication cob

ReqP04 Island Attraction jab 4h

ReqP05 Island Walking jab 2h

ReqI13 Power-Up Re-spawn jab 1h

None Advanced Collision Detection cob

None Gamplay testing jab 4h

DESIRABLE TARGET

ID Requirement Assignee Comments

ReqL03 Polished Lava Effect dpk performance

ReqPi03 Sophisticated Pillar Rendering Dpk textures

ReqI03 Sophisticated Island Rendering Dpk textures

ReqP03 Sophisticated Player Model dpk /cob

ReqUI07 (Fancy HUD) jab need graphics from designer

ReqI14 (Island Health Indication) cob depends on flamethrower

ReqP21 Slow Indication Dpk In player shader

ReqP07 Island Repulsion Jab implemented in MS03

ReqUI01 (Start Screen)

ReqUI05 (Map Selection)

None Advanced Collision Detection Cob Performance

None Default robot in player selection Jab

None No-repeat in menu Jab

None Death indication in HUD Jab

None Flamethrower island selection? Jab

None Improved ice spike aiming + Sphere jab/dpk

None Last man standing gameplay mode Jab

None Powerup and arrow animation Dpk

None (Level preview in Menu) Jab

None Keyboard controls for player 1 Jab

None Ice spike effect (particle system) Cob

None Explosion effect (particle system) Cob

None Fire effect (particle system) Cob

 19

DEVELOPMENT TIMETABLE

WEEK 11: 9.3.-15.3. WORKING TOWARDS MS01

ID Requirement Assignee Mo Tue Wed Thu Fri Sat Sun

ReqG01 Basic Camera cob 2

ReqG03 Basic Software
Framework

cob 8

ReqL01 Lava Ground jab 3

ReqL02 Basic Lava Effect cob 2

ReqL04 Deadly Lava jab 3

ReqPi01 Pillars cob 3

ReqPi02 Basic Pillar
Rendering

cob 2

ReqI01 Floating Islands jab 2

ReqI02 Basic Island
Rendering

dpk 4

ReqI04 Moving Floating
Islands

jab 4

ReqP01 Player dpk 4 4 2

ReqP02 Basic Player
Model

jab 4

ReqP06 Island Jumping jab 4

ReqP08 Direct Combat 1 jab 1

ReqP10 Direct Combat 3 jab 2

ReqP12 Ice Spike jab 3

ReqI12 Power-Ups cob 2

ReqP20 Collecting
Power-Ups

cob 1

None Testing jab/dpk/cob 4 4

None Work Estimates
and Plan for
MS05

jab/dpk/cob 1 1

WEEK 12: 16.3.-22.3. WORKING TOWARDS MS02

ID Requirement Assignee Mo Tue Wed Thu Fri Sat Sun

ReqG01 Basic Camera cob 2

ReqG03 Basic Software
Framework

cob 8

ReqL01 Lava Ground jab 3

ReqL02 Basic Lava Effect cob 2

ReqL04 Deadly Lava jab 3

ReqPi01 Pillars jab 3

ReqPi02 Basic Pillar
Rendering

cob 2

ReqI01 Floating Islands jab 2

ReqI02 Basic Island
Rendering

dpk 4

ReqP01 Player jab 4

ReqP02 Basic Player
Model

dpk 4 4 2

ReqP06 Island Jumping jab 4

ReqP08 Direct Combat 1 jab 4

20

None Testing jab/dpk/cob 4 4

None Work Estimates
and Plan for
MS05

jab/dpk/cob 1 1

WEEK 13: 23.3.-29.3. WORKING TOWARDS MS03 AND MS04

Exact schedule to be determined.

WEEK 14: 30.3.-05.4. WORKING TOWARDS MS03 AND MS04

Exact schedule to be determined.

WEEK 15: 06.4.-12.4. WORKING TOWARDS MS04

Exact schedule to be determined.

WEEK 16: 13.4.-19.4. WORKING TOWARDS MS05

Exact schedule to be determined.

WEEK 17: 20.4.-26.4. WORKING TOWARDS MS05

Exact schedule to be determined.

WEEK 18: 27.4.-03.5. WORKING TOWARDS MS05

Exact schedule to be determined.

WEEK 19: 04.5.-10.5. WORKING TOWARDS MS06

Exact schedule to be determined.

WEEK 20: 11.5.-17.5. WORKING TOWARDS MS07

Exact schedule to be determined.

WEEK 21: 18.5.-24.5. WORKING TOWARDS MS07

Exact schedule to be determined.

WEEK 22: 25.5.-29.5. WORKING TOWARDS MS08

Exact schedule to be determined.

ASSESSMENT

The game features various possibilities of interaction with the game world and other

players. Thus, it offers a very varied game play and diverse tactics a player can employ in

order to ingeniously defeat its opponent. On the other hand, it should still be simple

enough for everyone to learn the controls in a matter of minutes and enjoy playing.

 21

A game world mainly consisting of lava is a challenge, but should reward us - and the player

- with a beautiful, animated environment. Additionally, there is some cool physics involved

when islands collide with each other or pillars.

We regard the game to be successful if players can make real use of the floating islands -

and the involved physics - to fight each other.

22

PART 2 – PROTOTYPE
This chapter describes a first software prototype of the main game mechanics and shows

our findings based on its evaluation. The prototype already incorporates the following

concepts of the final game:

 Pseudo-randomly moving islands with colliding pillar interactions.

 Players who can move in the XZ plane and jump from platform to platform using a

jetpack.

 Long-range attacks of players using the ice spike skill.

 Melee attacks of players.

 Visualization aids assisting players to navigate in the 3D space using shadows.

 Power-ups which are placed on islands.

We decided to approximate all the game elements with very simple geometric primitives.

Although later islands might not have a flat surface in the final game, this simplified contact

and collision detection a lot. Their movement is based on two forces: First, they get

attracted by all the pillars whereas the force is quadratic to the distance. Second, we add a

random force in each frame to prevent them from converging at one point.

The player’s movement is divided into two parts: using the gamepads left analog-stick he

can move in the XZ plane, while pressing A activates the jetpack allowing him to move up

the y-axis. This movement is calculated by a simple acceleration of the jetpack, which is

added to the player’s velocity vector in each time step. Gravity acceleration works against

the jetpack and keeps a player standing on an island – and (in the worst case) falling down

into the lava. If players walk into each other they receive a minor velocity-based pushback.

A stronger pushback is encountered, if one player hits another.

Shadows are realized by real-time shadow maps. At the moment, they use no interpolation

in the look-up stage which leads to very jagged artifacts at steep angles. However, the sole

purpose of a shadow implementation at this stage was to determine whether or not

shadows would serve well to support players navigating on the islands.

The ice spike implements a homing mechanism. After the spike is set off, the spike gets

slightly pulled into the direction of an enemy. However, we have an upper bound for this

force in order not to make aiming too easy.

For easier tracking of hits (either melee or through ice-spikes) appropriate sounds were

also added.

EVALUATION

We have tested the game (and will continue to do so a lot within the upcoming days) with

respect to the following criteria:

 Is it easy and intuitive to move the player and perform attack actions?

 Does the core game play make fun, even after playing it for several minutes?

 23

While the latter question is common and crucial for every game concept, the former one is

one raised by multiple reviewers of our original concept. By testing this point in a very early

phase, we want to react properly to the feedback we’ve got in the first stage.

GAMEPLAY SCREENSHOTS

Two players are standing on a moving island. Two collectable power-ups are on other islands. A player’s health, energy and

fuel level is currently shown as a text label. Later, this will be replaced by a graphical HUD.

A player is shooting a bunch of ice-spikes, although missing his enemy.

24

A player is using his jetpack to move to the smaller, upper island. As visible in the text on top, using the jetpack needs fuel.

FINDINGS

POSITIONING

It is still quite tough to position yourself in the 3D environment. To make the task easier,

we added shadows to enable the player to look at the projection of the island and his robot

to more easily track his position. To control a player hidden behind an island or another

object, we will implement some feature showing his contours projected onto such an

object. This could also be combined with shadowing in a way a player gets a marker on all

islands below and above him.

The addition of shadows unfortunately leads to the problem that a player is completely in

the dark and not visible. Nevertheless, this can easily be solved by having the player emit

his own light and adding ambient lights.

Finally, we will have to do further experiments with the angle and focal length used for the

camera to reduce positioning problems.

PLAYER MOVEMENT

Currently, a player can walk off an island, which is a very unfortunate and leads to sudden

death. It would make sense to only allow the player from falling of an island if he explicitly

uses his jetpack or other means of traveling between the islands. Otherwise, He should not

be able to walk beyond the edge of the island. We will implement this behavior in a further

version.

 25

ISLAND TRAVEL

Using free jetpack movement, it is nearly impossible to move between islands, because of

mentioned 3D positioning and tracking problems. Therefore, a more passive approach (like

selecting the island and automatic flying) should be taken. This could also have the

advantage that a player can look around and shoot spikes at his opponents while flying.

Additionally, the path on which an island moves should be visualized in the future (for

instance by small rings of dust). Therefore the path of an island will have to be fixed or at

least calculated in advanced to visualize where an island will move to some time from now.

PARAMETER TUNING

Without the need to drastically change certain implementations and aspects of the game,

one can heavily improve the experience by tuning parameters (e.g. attack damage, gravity

or jetpack acceleration). To simplify this task and in order to allow fast testing of different

parameters, we implemented a game console which shows the state of all active entities

on the screen and enables the user to directly manipulate them:

An in-game console which allows the modification of parameters and attributes of all the present entities.

26

PART 3 – INTERIM REPORT
This chapter describes how the game developed from an early prototype to nearly the

finished low target. It describes step by step the work that has been done and the changes

to the original planning and schedule that have been made.

WEEK 1: FUNCTIONAL MINIMUM

CHANGES

One change as been applied to the requirements fulfilled by Milestone 2. The team agreed

to delay the requirement “ReqP09 – Direct Combat 2” to the next milestone since it was

not possible to implement the attack visualization without having a player model.

ACHIEVEMENTS

Compared to the prototype, the game has matured further. The major improvements that

have been applied are in detail:

 ReqP13 and ReqP14: A new type of ranged weapon has been added: The flame

thrower. Using the flame thrower, it is possible to either attack the opponent or to

destroy islands. The flamethrower does not have the same range as the ice spike,

but whatever is hit by its flames sustains heavy damage.

 ReqP12: The ice spike for which we had only a primitive implementation in the

prototype has been redefined and improved. The aiming is now easier than before.

 ReqI07 and ReqI08: Islands now constantly lose height while carrying a player. As

soon as a player jumps off the island it gradually regains its original height. This

feature improves the dynamics of the game by making it faster.

 ReqI05: Islands can now collide with each other, allowing different islands on the

same height.

 ReqUI06: The status strings have been replaced by a first and simple HUD.

 ReqP19: Failed

PROBLEMS

The game still has several shortcomings. Some of them have been mentioned in detail in

chapter two. This is a short summary of the persisting problems:

 Navigation is not trivial

 Ice spike aiming could be better

 The game play is overloaded and needs to be streamlined

 The collision response has to be improved in certain places

THE PRODUCT

 27

The working product features the moving islands in an already well fleshed-out form, but

without any textures. Movement between the islands is still restricted to the jetpack, while

a new gadget, the flame thrower, is available. It can be used to harm players, or islands.

The ice spike aiming has been improved, but is still lacking accuracy. Collision detection is

only done using simple collision primitives (cylinders and spheres).

WEEK 2: LOW TARGET PART 1

CHANGES

The realistic player model (ReqP03) has been moved to the desirable target, which further

delays the direct combat animation (ReqP09). Some additional requirements were

introduced, as a result of some additional play testing and findings from the prototype:

ReqI14 is a new requirement for a visual indication of an island’s health (it should glow

when it gets damaged by the flame thrower). Similarly, ReqP21 is the visual indication of a

player’s frozen state (which could also be solved through the HUD). Also, ReqP04 (Island

Attraction) has been extended to also include an easy way to jump from island to island.

ACHIEVEMENTS

The game made a huge step forward in terms of visuals compared to the functional

minimum. Also, the problems of inter-island traveling have been addressed quite

successfully in the form of island jump. The collision detection is also much finer grained

compared to the simple primitives of Milestone 2. In detail, those changes are:

 ReqL03: A shader for realistic Lava rendering has been written, described in-depth

in the corresponding section.

 ReqPi03: More sophisticated pillar models have been included, though they are not

textured yet.

 ReqI03: Three different island models have been included.

 ReqUI04: An in-game menu has been added which will allow the selection of maps

and players.

 ReqP04: Islands can be selected using the right analog stick; the closest island in

the direction the stick points at is selected and the player can attract that island by

pressing the right trigger. He can jump to that island by pressing the left trigger.

 ReqP05: A player can walk – or fly using the jetpack – to an attracted island.

 ReqI13: Power-ups respawn on a random island after a random amount of time

after consumption.

PROBLEMS

Some problems still remain, such as:

 The collision response for standing on top of an island has some flaws; it can

happen that a player oscillates on top of an island or gets set on top although he

collided with the island’s border.

28

 Islands don’t collide with the cave at the back, nor are they stopped from leaving

the screen to the left, right or bottom.

 On island attraction, some collision response is not correct: Islands can sometimes

go through pillars.

Collision response was particularly problematic, as it can heavily depend on the frame rate:

if the frame rate drops and the time step increases, objects can fall through or collide again

after the application of collision response – and the same (maybe inappropriate) response

gets applied again. Therefore, collision response has to be fine-tuned and adapted to each

object interaction combination which will take up quite some time. This frame rate

dependence may also mean that we will have to multi-thread our engine, so draw and

update code can be run on separate cores und a low update time step can be guaranteed.

SCREENSHOTS

The current game screen including the HUD.

 29

The green player jumping towards the selected island.

The Menu overlay.

30

PRODUCTION EXAMPLE - COLLISION DETECTION

OVERVIEW

To implement the game code in Project Magma, some sort of collision detection between a

set of entities (namely the player, power-ups, islands and pillars) was needed. As with all

the other parts of the software, the target was to keep the collision detection pluggable

and easy to configure. As with all features, this allows for reconfiguring the collision

detection at runtime. This has the advantage that we can test different collision volumes

for different entities.

In accordance to all the other parts of the software, a new property, a collision entity, and a

collision manager was introduced. Collision entities represent a “collidable” entity within

space bounded by a collision volume. They are stored inside the collision manager which

also tests for collisions between the entities. The binding between the simulation on one

side and the collision entities and the collision manager on the other side happens inside

the collision property which is attached to an actual simulation entity that should collide

with other entities.

BROAD PHASE

Broad phase collision detection is currently not optimized. The collision manager uses the

naïve approach testing each collision entity against each other entity.

COLLISION VOLUMES

Collision detection supports three different types of volumes:

 Bounding spheres

 Bounding cylinders aligned to the unit y-axis

 Triangle trees. These are trees of axis aligned bounding boxes containing triangles
inside the leaf nodes. Each leaf contains up to five triangles.

The content pipeline creates all three collision volumes for each triangle mesh. The level

designer then chooses which bounding volume is assigned to a given entity.

 31

PRODUCTION EXAMPLE –CREATING LAVA SURFACES

FIRST APPROACH: LAVA PLANES

We would like to show an example of a graphical element which we consider to be crucial

for a credible ambience of our game. This serves both as a documentation for our own

reference and for a work report for the lab.

We started our research in lava rendering by searching the web for tutorials describing how

to create lava effects in offline rendering systems like Maya. We found

http://en.9jcg.com/comm_pages/blog_content-art-94.htm to be the one with the nicest

results and implemented it first in Maya and then as a GPU effect.

We had to omit the displacement part for now, but we got everything else to work with
some tweaking. We added the heat flickering effect as described above by slightly
distorting the texture coordinates.

3b – Another fractal texture, generated in Maya and

luminance-amplified in the shader. 4a – The fractal

texture gets blended in and moves slowly over the plane

which simulates moving fog. 4b/5a – A normal map is

added to give the dark parts (stones) some structure.

5b/6 – Two cloud renderings, generated in Photoshop,

are used to generate a pseudo-random field of UV

vectors which are used to distort the texture coordinates.

This simulates air flickering due to the heat. 7 – A final

glow with Gaussian Blur is added.

1 – An overlay of several fractal textures (Stucco)

generated in Maya. Offsetting these with respect to

each other will be used for animation. 2 – The dark

parts of Stucco are replaced by a slight granite texture

generated in Maya. 3a – We add diffuse shading to

allow for normal mapping later on.

http://en.9jcg.com/comm_pages/blog_content-art-94.htm

32

GOING BEYOND PLANES: PARALLAX OCCLUSION MAPPING

The effect of the shader

described above looks already

quite pretty when seen from a

perspective projection like the

one in the picture to the left.

However, we had to find out

that the effect owes much of

its dramaticism to the wide-

angle perspective we’ve used during the development of the shader. As discussed in an

earlier chapter, though, our gameplay requires an almost orthographic view onto the scene

in order to maintain maximal clarity for the players navigating in the scene.

After using the camera

parameters from the game itself,

much of the effect is lost (see

right). First, the pattern appears

to be much more monotonous

than before, and suddenly we

miss the notion of depth. Since

the angle between the camera and the ground plane is relatively flat in our setting, we

thought that it would be nice to have some actual geometric structure in the lava instead of

just plain normal mapping. To find out if this would help, we took an implementation of

Parallax Occlusion Mapping and included it into our shader.

As we show on the left, we

regained a large part of the

depth of the scene we’ve lost

previously due to the

perspective change.

At this point, we started to get

more creative by altering parameters of the individual layers. We inverted, compressed or

luminance-scaled the height map, introduced new color mappings and changed the

strength of PO mapping. Soon, it became apparent that small changes in individual

parameters led to under- or oversaturation quite fast, and the need for some simple global

tone mapping arose. As we already had a post-processing stage, this was easy to

implement and it turned out that a 3rd order Lagrange polynomial with interactively

modifiable parameters already does the trick. On the next two pages, we show examples of

results we achieved with different parameter sets.

An increasing issue of PO mapping became the performance. We are currently working on

emulating the same effect with several planes, alpha maps and alpha testing.

 33

First – the original shader, just

with Parallax Occlusion

Mapping enabled.

Second – a very big glow radius

and low-contrast settings in the

HDR post-processing stage.

Third – low glow radius but

relatively high contrast settings

in the post-processing stage.

Fourth – higher glow radius,

intentional oversaturation to

emphasize the perception of a

very bright light source in the

lava.

In this set, we inverted the

depth effect of PO mapping by

negatively scaling the occurring

gradient term. The Stucco map

which combines the textures

(see earlier) is still unchanged,

though.

First – low glow radius and

strength, linear tone mapping.

Second – all illuminations are

scaled up to create an

uniformly hot surface.

Third – exaggerated contrast.

Fourth – even more

exaggerated contrast. The black

ridges can be interpreted as

floating ashes.

34

In this set, we inverted the

Stucco texture which serves as

both a height map and a

blending operator between

texture layers. Afterwards, we

let the Gradient unchanged, so

the entire effect is just inverted.

First – low glow radius and

strength, linear tone mapping.

Second – a very big glow radius

and low-contrast settings in the

HDR post-processing stage.

Third – enhanced contrast. The

bright structures can be

interpreted as little flames

which move along the surface.

Fourth – extreme contrast. The

flame effect is exaggerated now

to indicate that the fire is really

bright.

In this set, we inverted both the

Stucco texture and its gradient

afterwards. This leads to big,

bright, burning chunks on the

surface.

First – low glow radius and

strength, linear tone mapping.

Second – a very big glow radius

and low-contrast settings in the

HDR post-processing stage.

Third – enhanced contrast.

Fourth – extreme contrast.

 35

PART 4 – ALPHA RELEASE

THE PRODUCT

The current release features all items from the desirable target. Graphics-wise those are:

Textured pillar and island models, textured cave, animated lava and a generic particle

system used for the ice spike, the flamethrower and explosions. Furthermore there is a

newly designed HUD and a menu screen. On the game play side we have moving islands,

island attraction, island repulsion, ice spikes, the flamethrower and direct combat in the

form of hits with pushback. HDR from the high target is also already implemented.

CHANGES

Statistics (ReqG06) and high score (ReqUI02) have been moved into the high target. The

default means of moving among the island has been changed from island jump (ReqP06) to

island attraction (ReqP04). The jet pack can only be used when falling as a mean of saving

one selves and doesn’t use any more fuel, as this has been removed as a resource. Island

jumps have been restricted to certain distances. Island walking (ReqP05) has been replaced

by island jumps after attraction. Island jumps over long distances and island repulsions are

now only available through power ups. As a result of some testing, we streamlined the

controls and put all means to move between islands (jump, attraction and jet pack) on one

button – this will be evaluated further in the play testing phase. Furthermore, to improve

performance we split rendering and simulation into two different threads.

ACHIEVEMENTS

Many features have been polished since the last milestone and are now visually pleasing

and more usable. Those include:

 The lava effect (ReqL03) has been merged into the game, optimized and polished.

36

 Pillar and island models have been improved and textured. There are three island

styles (burnt, icy and green) with different decoration.

 Power ups and selection arrows bounce in a sinus wave, so they can be spotted

more easily

 The HUD has been completely redesigned and line with the streamlining of game

play (only two bars: health and energy, indication of jumps and island repulsions).

 We created a particle system (see production examples) which has been used for

the ice spike, and will soon be implemented in the form of explosion and burning

effects.

 The ice spike’s aiming has been improved, it is now able to avoid islands and pillars

to a certain degree to better hit its target.

 Islands which get attracted push away other islands in their path and quickly arrive

at their destination, though deceleration slowly towards it.

 The general movement of islands has been improved and hovering back to their

original path around a pillar has been implemented.

 The implementation of a multithreaded architecture (one thread for rendering,

multiple for simulation and collision detection) resulted in a large performance

boost (see production examples).

PROBLEMS

Most of the bugs should be fixed until the alpha presentation of Tuesday and the play

testing of this week. We track all existing bugs using our own Mediawiki. Our biggest

problems right now are keeping the performance around 30fps and eliminating the

jerkiness which can result from the decoupling of rendering and simulation.

PRODUCTION EXAMPLES

ENVIRONMENT

The environment now features different elements in their final version which previously

were only available as dummies:

First, we have different island models now which correspond to

different altitudes inside the cave: There are grassy islands on a

middle level, icy islands on the upper and burnt islands on the

lower level. Using pixel shaders, we added some windy grass parts

on the side of the grass islands. Also, we have new models for

pillars which feature snow on the top to indicate that they are on

a higher altitude. As for the lava, we decided to go for a variation

of the third picture in the interim report chapter. The cave can be

seen in the background as well.

2 islands next to a pillar.

 37

All elements except the lava are shaded with a fully-functional Phong shader with individual

extensions, lit by three directional light sources. The

first light source is a warm orange from below to

simulate elements lit by the lava. This one has a very

fast decay as can be seen on the image below. The

second light is a cold blue one from above, indicating

daylight. By tuning these lights accordingly, we’ve

been contributing to the contrast between cold and

warm tones which we wanted to achieve right from

the start. The third light source, finally, is a moving

spotlight coming from behind. This emphasizes the

feeling that the actors are actually fighting in an

arena and increases the contrast in the border

regions. It will be a new high target to add a moving

spot light model to the cave wall to justify this particular light source.

HUD

We created a new version of the HUD which has a

focus on simplicity and better visual integration into

the whole scene. Also, we added some blinking effects

whenever damage is sustained in order to increase the

feeling of being hurt (analogously to red tinted screens

in shooting games). When the player is frozen, his

name blinks in blue tones. The number of lives is

displayed as a number inside the health bar. Below the

energy bar, the current power-up details (if any) are

displayed.

The HUD is mirrored according to its position on the

screen – this can be seen in the full-screen picture

above. In terms of implementation, the bars consist of

different monochromatic components which are

colored and combined in a pixel shader.

ANIMATIONS

We are using the XNA Animation Component Library (ACL)

from http://www.codeplex.com/animationcomponents to

animate the player characters. We had to change some parts

of the library since our models now need to be processed by

both our own processor as well as the ACL processor. As for

models, we are currently using the standard dwarf model that

is supplied with the library but we hope to get an own model

into our game within the next weeks. In terms of coloring the

The new HUD. Top: Full Health and

Energy. Middle: Damage is being

sustained at the moment. Bottom:

Player is frozen.

The animated dwarf character

standing on an island.

Three pillars in the lava inside the cave.

http://www.codeplex.com/animationcomponents

38

players, we have an alpha map on the dwarf’s texture which indicates which parts of the

model may be colorized how to what extent.

MULTITHREADING

OVERVIEW

Running Project Magma on only one of the three cores of the Xbox resulted in performance

problems during the alpha phase. The obvious optimization was to divide the game into a

rendering and a simulation thread since both used about the same amount of CPU time.

One suggested approach was not to care about synchronizing the two threads, but to just

use the simulation data as-is inside the renderer. But this approach could lead to

inconsistent frames and possibly some other more serious problems. Another possibility is

to keep the data the renderer needs in two places. On one hand the simulation still owns

the master data; on the other hand the renderer owns a copy of the data which is

periodically updated. Using this concept synchronization can be achieved with a minimal

amount of overhead.

TECHNICAL DETAILS

The technical realization of the mentioned approach is quite trivial. On the simulation side

a set of renderer-stubs are installed. The simulation always updates the data that needs to

be passed to the renderer on these stubs. These stubs record changes using change-objects

in one queue per simulation frame. After the simulation frame is done some intermediate

code passes the queue in a synchronized manner from the simulation to the renderer.

Whenever the renderer wants starts to render a new frame it checks whether it has

received new update-queues. If so, it applies the changes provided by the queues to its

copies of the simulation-data. This results in the renderer being updated in a consistent

manner with only one short point of synchronization, namely the passing of the update

queue. In addition the creation and application of the update queues is usually not a huge

performance hit since there are not that many changes due to temporal and local

coherence. The memory overhead is also quite low because the renderer does not need

that much data to be copied. Usually it only needs copies of position, rotation and scale.

The drawback of

this approach is

shown in the

illustration on the

right side. It visualizes the timeline of simulation and renderer frames. On each frame-

change of the simulation (denoted with a vertical marker) some updates are passed to the

renderer. If the simulation is running on an unstable, varying frame rate the situation might

occur that the renderer has to render two consecutive frames using the same data. This

can lead to a jerky frame rate which can result in the game appearing to run at a much

lower frame rate. If, for instance, the renderer runs usually at about 30 frames per second

the resulting sequence of pictures may look like the generated by a renderer running at half

Simulation

Renderer

 39

the speed (since some frames are really the same). We think that the solution to this

problem lies in interpolating the values delivered by the simulation. Using interpolation we

can avoid having to render the exact same frame twice, which should lead to a smooth

animation of all the objects within the game.

PARTICLES

OVERVIEW

The simulation and rendering of particles is a non-trivial problem. Especially the simulation

of many thousands of particles on a computer’s or console’s CPU is not feasible because

they are just not designed for such tasks. Thus some research was used to implement the

particle system for Project Magma. The main sources of information are:

 “Building a Million-Particle System” by Lutz Latta, published on Gamasutra in 2004:

http://www.gamasutra.com/view/feature/2122/building_a_millionparticle_syste

m.php [1]

 “UberFlow: A GPU-Based Particle Engine” by Peter Kipfer, Mark Segal, Rüdiger

Westermann, published in 2004:

http://ati.amd.com/developer/Eurographics/Kipfer04_UberFlow_eghw.pdf [2]

 XNA Sample: http://creators.xna.com/en-US/sample/particle3d [3]

There is also another interesting read that is, unfortunately, of no use, since it is using the

native Xbox 360 SDK and not XNA:

 “Particle System Simulation and Rendering on the Xbox 360 GPU” by Sebastian

Sylvan, published in 2007:

http://www.ce.chalmers.se/~uffe/xjobb/ParticleSystemSimulationAndRenderingO

nTheXbox360GPU.pdf [4]

In general the readings discuss particle systems that are simulated on the GPU. But there

are also two different ideas on how to approach the problem.

The first one uses so called stateless particles which are used by [3]. In this approach the

programmer chooses a set of closed form functions that compute the parameters of a

particle (such as position, size, etc.) depending only on a time parameter. There are several

drawbacks: the particle cannot react to changing external forces and particles must always

be rendered using an ever changing vertex buffer which puts a lot of strain on the bus

transferring data from the CPU’s local memory to the GPU’s local memory.

The second approach which is taken by [1] and [2] are so called stateful particles. In this

approach the state of a particle is stored inside a set of textures on the GPU. The particle

simulation is then run on the GPU using a pixel shader. Using this design has the advantage

that the data resides at all time on the GPU which prevents expensive transfer operations.

On the other side there is the drawback that the GPU always simulates a number of

particles depending on the texture size. Computational cost is therefore not determined by

http://www.gamasutra.com/view/feature/2122/building_a_millionparticle_system.php
http://www.gamasutra.com/view/feature/2122/building_a_millionparticle_system.php
http://ati.amd.com/developer/Eurographics/Kipfer04_UberFlow_eghw.pdf
http://creators.xna.com/en-US/sample/particle3d
http://www.ce.chalmers.se/~uffe/xjobb/ParticleSystemSimulationAndRenderingOnTheXbox360GPU.pdf
http://www.ce.chalmers.se/~uffe/xjobb/ParticleSystemSimulationAndRenderingOnTheXbox360GPU.pdf

40

the actual number of particles simulated but by the maximum number of particles the

system allows.

Project Magma implements stateful particles.

TECHNICAL DETAILS

When using a stateful approach to

calculate a particle on the GPU the

state of a particle is stored inside

some resource residing on the

GPU. On modern DirectX 10

compliant hardware there is the

option to store particle data inside

vertex buffers, process them using

vertex shaders and to use the

stream out feature to write to new vertex buffers. Unfortunately the Xbox does not

support this feature. Therefore the state of particles is stored inside a set of textures: One

position texture, one velocity texture, and a set of textures storing static particle data like

its time of birth, its type, some random numbers associated to it or other data. The data is

then processed by a pixel shader which outputs new values for position and velocity. Since

a pixel shader cannot write into the same texture it is reading from the system needs to

double buffer the position and the velocity texture. The illustration on the right is copied

from the Gamasutra article and shows this

setup. There is also another illustration

showing the position texture of a particle

system.

Creating new particles is quite easy. The

systems can either track particle lifetime on

the GPU, or, like it is implemented in Project

Magma, use the texture as a ring buffer. New

particle values are then simply rendered as

single points onto their position in the texture.

Rendering is implemented using point sprites

and one static, huge vertex buffer rendering

each particle of the texture. Particle position and life are read inside the vertex shader

using the vertex textures feature of shader model three. If the particle is not alive anymore

it is offset to some off-screen location. Otherwise the shader renders it to its current

position.

Running the particle system on the Xbox GPU and an additional set of modern high end

GPU’s has shown that the system is easily able to render many thousands of particles

without noticeable impact on the performance of the game. We also experienced that

currently the most expensive operation seems to be the upload of new particles to the GPU

since this involves the modification of a vertex buffer.

 41

PART 5 – PLAYTESTING
This chapter summarizes the results of the testing sessions that have been organized to

test Project Magma.

PARTICIPANTS

To test the game, fourteen test persons had been invited, including one female tester. They

all have different knowledge and experience with games. Four of them play frequently, one

never and the others rarely. The platform on which they play games on the other hand

seems to be quite unimportant. Most of them have experience on a wide range of

platforms including the PC, the Wii, the Playstation, the Xbox and handheld consoles.

TEST SESSIONS

Because of the large number of participants and since not all of them have been able to

meet at the same date, the testing session had to be divided into two separate sessions.

They took place at:

 Thursday, 5/7/2009, 17:30-19:30 at IFW C31

 Friday, 6/7/2009, 13:00-15:00 at IFW D33 (CGL Lab)

QUESTIONS ASKED

The questions asked are divided into four different categories. Some of the questions have

been taken from the lecture notes. Other, more specific questions have been added by the

team members. For each question, a short summary of all the answers is included in the

document. Exact numbers are listed when appropriate.

PLAY MATRIX

The Play Matrix contains one orange dot for each person that participated in the tests. The

blue dot represents the mean value of all opinions.

Lu
ck

Sk

ill

Dexterity Strategy

42

OVERALL CONCEPT COMPREHENSION

DESCRIBE THE OBJECTIVE OF THE GAME.

When asked for the main goal of the game, six people called for survival. Three stated that

the player should either survive or destroy a lot. Three others stated "kill 'em all".

WAS THE OBJECTIVE CLEAR AT ALL TIMES?

Most people (10) understood the goal right away, 2 more understood it after a few

minutes. One person identified the pure selection of an island as a challenging game

objective.

WHAT TYPES OF CHOICES DID YOU MAKE DURING THE GAME?

Five people had to choose which weapon they are going for. Five others identified the

choice between retreating and attacking. One person named the choice of items to collect

and of when to jump.

WHAT WAS THE MOST IMPORTANT DECISION YOU MADE?

No clear answer was given, many people left blank.

WHAT WAS YOUR STRATEGY FOR WINNING?

Six people found using ice spikes to be the most important strategy. Four of found it most

important to move fast. This matches the observation we made that people jump over the

board and almost shoot exclusively. Three people identified waiting as crucial, two tried to

collect as much power-ups as possible. One person has not found any strategy at all,

another one just wanted to survive the program crashes. ;-)

DID YOU FIND ANY LOOPHOLES IN THE SYSTEM?

Most people did not find any. Four people found melee attacks too weak and rockets too

strong.

HOW WOULD YOU DESCRIBE THE GAME?

Received keywords were "confusing", "good idea", "fun", "good effects", "flying

marshmallows", "lots of shooting", "multiplayer jump & run", "jump & smash", "jump &

kill" and "having addiction potential".

WHAT ELEMENTS COULD BE IMPROVED?

Many answers were given. As for player movement, some people found jumping too hard

(3), and one person each wanted shorter jetpack duration, found the trees on the islands to

 43

be hindering, and found island attraction useless. Two persons demanded a more intuitive

selection of islands, whereas someone did not like islands leaving the visibility area,

another person wanted less islands in general.

Regarding weapons, three people asked for weaker ice spikes, one of them specifically

wanted it to be easier to dodge them. Two persons asked for a stronger ice spike but only

by power up (1) or only aiming at the selected island (1). Also, somebody claimed that both

people fall down when using melee attacks. One person wanted the flame thrower height

be controllable using the thrust button.

Demands in the graphics category included more detailed player models (2), better

visibility of the repulsion function (1), better visual indication if a player takes damage (1)

and better visual clarity in general (1).

Generally, people also wanted us to fix the occasional crashes (2), a tutorial (1), some

improvements in the menu (2), and some camera motion (1).

OVERALL IMPLEMENTATION QUESTIONS

HOW DID THE CONTROLS FEEL? DID THEY MAKE SENSE?

Four people found the flamethrower on the right stick confusing and had it rather be

controller similarly to other functions (using selection arrow, buttons). Five people found

the current assignment ok. One person suggested a tutorial to quickly introduce the various

functions available - which some people thought are too many of, especially on the

overloaded button A.

IS THERE ANY ELEMENT WHICH WAS IMPLEMENTED BADLY?

There were various ideas mentioned here. Those that are already mentioned elsewhere in

the document omitted here. The new ones are: Explosions should be more transparent, so

players are visible behind them. Obstacles on islands are annoying. Hitting should be

implemented so you don't fall down yourselves.

WHAT WAS YOUR FIRST IMPRESSION?

Six people found the game confusing at first sight - a situation which we definitely want to

avoid. Five people were generally impressed by the graphics (looks cool / professional, nice

effects). One person found the current combination (islands, lava, vikings) weird, another

one mentioned the absence of sounds.

DID THAT IMPRESSION CHANGE AS YOU PLAYED?

Five people left the question blank or found that the impression did not change. Most

other persons thought that with time you get used to the controls and a better overview.

There were some mentions of the increasing jerkiness and error 4.

44

WAS THERE ANYTHING YOU FOUND FRUSTRATING?

Two people didn't answer to these questions. Another two found the island selection

frustrating. Three people thought that you should always be able to jump. Yet another two

found the controls to be annoying. Finally, people mentioned the ice spike being too

strong, creating a big chaos and not being able to dodge frustrating. One didn't like being

stuck in obstacles on the island.

DID THE GAME DRAG AT ANY POINT?

8 people didn't find the game to get boring. Three people thought it gets repetitive with

time, especially with only one level. Two people found that only using ice spike and

camping as the best strategy is a bit boring.

WHAT WAS MISSING FROM THE GAME?

Three people couldn't think of anything to add to the game. One found we should add

more specialized player characters with specific abilities. Two thought that there should be

some sound. Other players thought that adding new weapons (mine-like) and more levels

would be cool. Two people thought there should be a way (i.e. shield) to defend against ice

spikes. One person especially mentioned it - but many said it while playing - there need to

be stronger indications of what is going on, what your possibilities are, and how the

destination island is linked to the player.

IF YOU COULD CHANGE JUST ONE THING, WHAT WOULD IT BE?

Four people couldn't think of anything to change. Two thought the island selection should

be better. Another two wished simpler controls. One person thought that islands should

stand sill, but you should be able to jump on any island. Other persons mentioned less ice

spikes, more space for movement and changing ice spike from a default action to

something which has to be gained by power ups.

IF YOU WERE TO GIVE THIS GAME AS A GIFT, WHO WOULD YOU GIVE IT TO?

Four people didn't want to give the game to anyone (left this blank). Two people wanted it

to give to any Xbox owner, one person to some Xbox owner. Most people would give it to

friends and family. Two people thought that the game would be great for a children’s'

party.

SPECIFIC IMPLEMENTATION QUESTIONS

WAS IT EASY TO SELECTED ISLANDS?

 45

Seven people found it difficult to select the desired island. Three people found it nearly

impossible. The remaining people thought it needs time to get used to.

HOW WOULD YOU HAVE EXPECTED THE ISLAND SELECTION TO WORK? WHAT

WAS YOUR FAVORITE WAY OF MOVING BETWEEN ISLANDS: JETPACK, JUMPING,

ISLAND ATTRACTION, OR ISLAND REPULSION?

Six people clearly preferred jumps over other forms of inter-island movement. Two people

thought that jumps should be the only way. The jetpack was rarely used - most people

never used it at all. Two people sometimes used attraction, one thought it was fun while

another one thought it should be removed. Two people never used repulsion, one thought

it sucks being an additional control element and two people really liked it.

WOULD YOU LIKE TO BE ABLE TO USE THE JETPACK AT ANY TIME?

Six people didn't want to be able to use the jetpack all the time. Five thought that we

should keep the jetpack, three of them however wanted it only for a limited amount of

time. The rest didn't know of or never used the jetpack.

WHAT WAS YOUR FAVOURITE WEAPON? ICE-SPIKE, FLAMETHROWER,

FEASTS/AXE? COULD YOU USE ALL OF THEM? OR WAS ONE OF THEM

UNUSABLE? WHY?

Five people had no comment on this question. Four people preferred the ice spike because

it was the most effective weapon but also stated that it’s actually way too strong and

always hits is target.

Two people preferred melee attacks, while five did not like it. Their main reason for that

was that sometimes both players die when hitting their opponent. This is a bug. One

person preferred the melee but only because he considers the other weapons to be unfair.

Another person stated that aiming is too hard with melee.

The flame thrower was considered to be the least efficient weapon by six people. One of

them highlighted that it would generally be a good idea for midrange attacks, though. One

criticized the graphical implementation (which was unfinished at that point), two criticized

that having to use an additional stick is bad. Two people did not know how to operate the

flame thrower at all.

WAS THE HUD COMPREHENSIBLE? HAVE YOU BEEN ABLE TO READ OUT THE

DESIRED INFORMATION? WAS SOMETHING MISSING?

Three people left this blank. Four thought it to be comprehensible. Two rarely watched it or

didn't have time to (to hectic). One person thought it should be moved further out of the

action (corners), another suggested it to be larger.

WAS THE GAME JERKY?

46

Only five people answered no to this question. All other said yes. Most of them added that

this happened only after 5-10 minutes of playing, though.

SAMPLE QUESTION SHEET

This is what an average filled out sheet looked like:

OUR OWN OBSERVATIONS DURING THE TESTING SESSIONS

During the sessions, we sat beside the players, observed them and made our own notes.

These are:

 We will probably need more maps, most of them should have less and bigger

islands.

 The controls are generally too complex. The A button has too many functions.

 Player often do not understand where they are, especially after respawning.

 Sometimes, the player seems just to explore randomly? Maybe related to the right

front pillar?

 HUD should be moved more towards the corners

 In the beginning, we will need some orientation time before the action starts.

 Menu selection is hardly visible on the CGL lab screen

 The colors should remain when you start another game. Also, multiple players can

choose the same color, which is bad. Maybe we should just leave them fixed.

 People thought there might be teams (analogously to Worms Armageddon, e.g.)

because players could choose colors.

 Perspective distortion might be too strong

 Multiple players shouted that islands should not leave the screen

 Somebody suggested double-jumps and multiple persons agreed.

 When using the axe, both players fall down.

 Sometimes it seems to be hard to recognize in which direction the player is looking

 Nobody cares about the help screen.

 Orange and pink are hard to distinguish, especially if they stand in the background.

 The game has addiction potential, multiple persons said.

 The game is clearer with 2 players than with 4. The fewer players we have, the

more the game ranks on the “skill” rather than the “luck” side in the play matrix.

 Cinematics in the beginning (intro sequence) and the end (winning sequence) are

missing.

 47

CONCLUSIONS

The testing session confirmed that our game generally is on the right track: Many of the

testers stated that the game play is promising and the graphics look professional. However,

there were many problems mentioned due to the alpha nature of the game. Some of them

were very specific, but most of them on similar trends. In the following, we will list those

problem trends and some possible solutions which we are going to evaluate within the next

days:

 The game crashed from time to time in an error 4 and gradually got slower.

We already started addressing the performance issues by tracking memory

allocation and will address the error 4 by logging errors on the X-Box.

 The ice spike seems to be way too strong. Because of this (and maybe also because

it has the nicest visual effect up to now), it was the weapon favored by most.

This can be addressed in various ways: some testers suggested to only allow

the ice spike by a power-up or to let him aim towards the island instead of

towards the player. The obvious approach is just to make it much weaker; but

this would still allow the popular strategy of just shooting ice spikes from time

to time to weaken the enemy. Another idea is to penalize the use of ice spike,

e.g. by making it weaker with increasing distance or by making direct hit

stronger the less energy you wasted on ice spikes. However, this might be too

complex.

 The game is still too confusing – especially in the beginning. The players are hard to

spot and it takes some time to notice on which island a dwarf has been respawned

after a death.

To decrease the initial confusion we will likely implement a camera path before

the game starts, so players have time to orientate themselves. During that

time, a few big overlaid words might explain the main idea of the game. For

respawning, a slow appearance (like when beamed in star trek) using screen-

space particles going from the HUD to the player could be implemented. This

would make sense since the HUD position is the only invariant per player

throughout the game.

 The controls seem to be too difficult. The overloaded A button confused many

testers. Also, island selection appeared to be random to most players.

We have many functions right now and may have to eliminate some of them to

reduce control complexity. The functionality on A could be split onto multiple

buttons – but this would again increase complexity. The island selection

definitely has to be re-evaluated and maybe constrained onto islands in a

certain radius around the player. Some people suggested putting some attack

functions on the shoulder buttons which we will also have to evaluate.

48

 Players did not like the fact that you cannot jump all the time. Island attraction was

rarely used (most players didn’t at all realize it existed). Even fewer used island

repulsion or the jetpack.

We evaluated jumping being the only movement some weeks ago and found it

to quirky; but after this feedback, we will have to evaluate jumping as main

means of switching islands. But maybe we can also inspire players to use

attraction by making it more obvious when an island is being attracted. In

general, we will have to find ways to indicate to the player what actions can be

performed right now. Also, we will have to make it clear that the jetpack can be

used at the time when the player is falling down. A clearer marking on the XZ

plane of the current player position while using the jetpack has to be

considered.

 The flame thrower is considered too weak and the stick control is considered

unnecessary.

Thus, for the last part of the project, we will be busy implementing missing visualizations

and fixing the problems detected during testing.

IMPRESSIONS

These two pictures give an overall impression of situations during the testing sessions.

 49

50

PART 6 – CONCLUSION
The following describes the last changes in Project Magma before its final incarnation as

Magmageddon and our overall conclusions on the project.

THE PRODUCT

The final release contains all features from the desirable target, including HDR rendering

(ReqG04) and the advanced camera (ReqG02) from the high target. As mentioned in the

alpha release, some features, like island attraction (ReqP04), were implemented but later

removed if they were too hard to use or didn’t make sense gameplay wise. Likewise, the

jetpack has been reduced to a safety measure, which can be used to stop one’s fall when

pushed off the island. Similarly, fog was introduced to get calmer overall look. Although it

was sometimes hard to get completely rid off features or put already implemented

features in the background, doing so was clearly a large improvement in the look and feel

of the game, which we were quite happy with at in the end.

CHANGES

Since the alpha release the following features were added or improved:

 Power-up respawn (ReqI13) was improved in a way that power-ups now wait in a

queue when no island is free to respawn on.

 Player selection (ReqUI04) has been simplified by removing the option to select

colors and giving each controller slot a fixed player color.

 The dwarfs from the alpha release have been replaced by the final robot model

(ReqP03), which fits much better into the game’s landscape. The models feature

animations for jumping, island repulsion, walking, running and hitting.

 A moving camera (ReqG02) has been implemented, which keeps the main action in

focus: it zooms in on the players and all islands which they can jump too. This way,

some islands may be out of the screen, but never the ones you can interact with.

 The movement of the islands (ReqI04) has been improved, so it is smoother and

better reacts to collision events.

 The placeholder sounds used for all previous releases were replaced by better

suiting and normalized ones.

 51

FEATURES

 4 robots fighting in death match mode

 4 different maps, with their own look and playing style

 3 attacks: ice spike (long range), flamethrower (medium range) and pushing (short

range)

 3 means to navigate between islands: jump (short range), repulsion (long range)

and jetpack (backup)

 Beautifully designed islands hovering amongst pillars

 A cave full of realistically animated lava with snow dropping in from above

 Various sophisticated lighting and particle effects

THE FEEL

The game play has undergone some major changes since the first playable version and

evolved from a simple prototype, where your main goal was not to fall down while

navigating between the islands, to a polished product which gives players a range of

choices how to defeat their opponents.

A round of Magmageddon starts out with up to four robots getting dropped into the cave

onto hovering islands. Each player controls one such robot, distinguishable by its color. The

slow spawn animation gives the players time to spot their robot on the field. When the last

robot has landed on an island, the game starts.

Now the players have the main choice between going mano-a-mano (or roboto-a-roboto?)

with another player or us one of the ranged weapons (flamethrower or ice spike) to take

him out. Whereas directly engaging another robot is free and can result in him getting

pushed down the island, ranged attacks cost energy – and you cannot directly kill an

opponent with your initial amount of energy. So when energy runs out you either have to

wait for it to slowly recharge or find an energy power-up. Waiting, though, may not be the

best idea as the other players will very probably not just sit back and relax. They’d rather

directly charge at you and push you down your island. If you’re skilled, though, you may

still be able to activate your jetpack before falling into the lava and fly to safety. On the

other hand, if your opponent is skilled to, he will throw an ice spike at you beforehand or

while you’re in air, which will deactivate your jetpack. Had he been the one pushed down,

you couldn’t have stopped him at all, being low on energy from your use of ranged chicken-

weapons before. But then again, he may be low on energy too, because moving the islands

to navigate through the cave needs energy too.

In the end, the essence of the game is to find the balance between not using energy at all

and using it up too much so you don’t have any left to navigate or throw ice spikes to stop

an opponent’s jetpack in time.

52

STATISTICS

In preparation to writing this document and also for the final presentation we sampled

some statistics about the work that we have done. We checked out every 100th revision

from the subversion repository and created an excel sheet containing the most important

numbers for both c# code and effects code. We would like to point out some interesting

facts that we discovered while analyzing the statistics:

 Only the first half of all subversion revisions (in total 1600) has been submitted

until end of April. This

means that we

checked in more than

800 revisions in may,

while we

implemented testing

feedback.

 Another indication

that we have been

fine tuning small

details is that we

wrote most of the

code (nearly 20’000

lines of code) until the

end of April. Only small

parts have been

changed or added

during the final phase

of the project.

 In general our code

seems to be well-sized.

Overall we had an

average of about 100

lines of code per file. We think that this is a reasonable number and statistics

confirm that we never drifted much from this ratio.

 Comparing the c# statistic with the effect statistic it is easy to see that the project

started with a prototype concentrating on the core architecture and the game play.

Graphics effects have been implemented after about the first half of the project.

 The loss of code between 04/02/2009 and 04/09/2009 seemed to be a bit weird

first because we never deleted large parts of the code from our game and we also

did not count in any external library. After a bit of research on the subversion log

we discovered that this was due to the fact that the subversion plugin for visual

studio which we used did not commit file deletes. So chunk files accumulated and

were deleted during the questioned time period.

0

100

200

300

0

10000

20000

30000

12.03.2009 12.04.2009 12.05.2009

.cs Files

Total Lines of Code Nr. Files

0

10

20

30

40

0

2000

4000

6000

12.03.2009 12.04.2009 12.05.2009

.fx Files

Total Lines of Code Nr. Files

 53

CONCLUSION

OVERALL

We think our project is quite a success.

First and foremost, our vision was to create a game with moving platforms, thus making

the game interesting through an ever changing “playfield”. In addition we wanted the game

to be a contrast between the hot Lava from below and the cold ice from above. We think

that after a lot of testing we succeeded in bringing this experience to the player although it

still needs some time to get accustomed to the controls.

Besides the actual game the project was also a success in other areas: The project involved

a lot of teamwork, which we managed to achieve. At the beginning we needed some time

to learn how the other team members think about different areas and problems within the

game. But after that the communication was always straight and clear and it was clear to

every member of the team how the others thought about the topics in question. Even

though our discussions have been intense and heated sometimes, we think this is the

better way than to always be polite and leave the other person in the dark on what you are

really thinking.

Additionally, from a project management view, we were on schedule most of the time. Our

aim was to meet all the milestones and to move features dynamically based on the

experience gained by previous milestones reached. This means that we sometimes moved

features to later milestones in favour of more important features that we needed earlier

than expected. The milestones themselves have been delayed by at most one day which is,

as we think, a good result.

Finally, the work with external artists, which was planned from the very beginning, paid off

in the end. Of course a lot of time went into discussions with the artists on how to model

different aspects of the game. It was also uncertain for quite some time if we would ever

get a player model and we prepared some replacement models ourselves. In the end we

received everything we needed and were able to show a game with high quality,

professional models.

Considering the complexity of a project like Magmageddon and looking at the aspects

mentioned above we think that the project overall went quite smoothly, with some hard,

but solvable problems in between.

JANICK BERNET

My personal goal was to create a game which is fun to play with your colleagues and which

contains some novel ideas. To achieve this, we had to experiment with a lot of different

weapons and types of movements and had to tune hundreds of parameters to get the

working features balanced right. I myself especially had many different approaches for the

various collision-responses to experiment with, as depending on the objects involved and

their movement a different type of collision-response may be appropriate. For instance for

54

an island colliding with a pillar, you can simply reflect the island’s velocity at the collision-

normal, while for a player using his jetpack this doesn’t work. It was sometimes hard to get

rid of an algorithm which doesn’t create pleasing results, but was a huge effort to

implement, or to even drop some features, such as island attraction, which may have had

many hours of work dedicated to them, completely. But in the end it is a necessary to get a

streamlined and balanced game play and I think we did a very good job at that.

Overall, working on a game was a great experience and definitely one of the high points of

my ETH career. Although time consuming, having one’s own game to show to people – and

to watch them even enjoying it – is extremely rewarding. Still, I should warn future Student

that it is not the best idea to also do Compiler Design I in the same semester. And it gets

even harder if you manage to get your system disc to break down three weeks before the

semester’s end…

DOMINIK KÄSER

It has always been clear that the game laboratory will be one of my most challenging

classes at ETH. Retrospectively, it was a big journey indeed. On one hand, I could fill my

knowledge gaps in the areas of GPU programming, 3D modeling and software architecture

using C#. On the other hand, though, it was important to get the experience of working full-

time on a reasonably-sized project for multiple months with two team members. Since we

all had quite strong (and not always agreeing) opinions about both design and

implementation, this raised several challenges which we were confronted with. It turns out

that meeting regularly in real-life is a crucial aspect to avoid misunderstanding and

inefficient online chats. Another point is that having a bugtracking system is essential.

Our goal in "Magmageddon" was to obtain a visually appealing game which was fun or

even addictive to play and running smoothly on the X-Box. As three very motivated people

whose teamwork got gradually stronger with time, I think we successfully reached this goal

and I hope that we can go beyond the current result at some point. First, though, a great

deal of holidays will be needed!

CHRISTIAN OBERHOLZER

I always wanted to visit the game development laboratory from the very first moment on

that I arrived at ETH. Because of that I also had a lot of expectations both in terms of the

course itself and also in the end result that we had envisioned. And of course in the end it

was hard to fulfil the expectations.

In terms of the project itself I think everything is nicely summarized in the overall

conclusion above. But regarding the course itself I would like to mention some points.

First of all I imagined the course to be quite different from what it actually was. This was

mainly due to the advertisement presentations that have been hold at various occasions by

different representatives of the computer graphics laboratory. For example I expected that

there is a weekly meeting in the room with the large television to play all the games. But in

fact this was never the case. It would be a cool idea to arrange such a meeting by the

 55

organizers of the course. Even if it would not be mandatory I think a lot of the course

participants would meet there, strengthening the cooperation in between teams.

I also think that targeting the Xbox 360 using XNA is a double-edged sword. On the one

hand it ensures that everyone starts off from a secure point. It is also quite motivating

developing for the Xbox with a huge coolness factor. On the other hand it is also very

restrictive. Some game genres like strategy games are nearly impossible to implement on a

console. Personally I would have preferred to be open to choose the target platform

depending on the game to be implemented.

All in all we had sometimes an exhausting, but always exciting time developing the game.

And most importantly: The result is really cool!

SCREENSHOTS

56

 57

58

 59

60

