
SOS
Simple Operating System

30th May 2008
Advanced Operating Systems Course

Project Documentation

Andreas Kägi
akaegi@student.ethz.ch

Christian Oberholzer
coberhol@student.ethz.ch

Table of Contents

Chapter I: Overview..4

1. Design Decisions..4
2. System Architecture...5
3. SOS Servers..6

Chapter II: System Details..9

1. Boot Process..9
2. System Call Dispatching...10
3. Virtual Memory Management..12
4. Process Subsystem...14
5. Loading Binary Files using the Binary Server..17
6. I/O Subsystem..17
7. Networking Subsystem...20

Chapter III: Limitations...22

Chapter IV: Testing...24

1. Built-In Tests..24
2. Test Programs..24
3. Conclusion...25

 3

Abstract
This report documents a simple operating system (SOS) that was built as a course project within an
Advanced Operating Systems course. The goal was to build an operating system that builds upon the L4
micro kernel. SOS should feature process management with multiple processes residing in virtual memory,
paging and swapping, console access (GNU Netcat), file I/O (NFS) and a clock driver. SOS was required to
implement a simple POSIX-style client interface enabling the user to do I/O, process- and time management.

The decision was made to design SOS, very much in spirit of the L4 micro kernel, as a multi-server multi-
threaded operating system. This lead to a more complex system but in return gave better modularity and
maintainability. The complexity of the system was particularly apparent in the need to carefully design the
interdependencies between different SOS server threads in order to prevent deadlocking the system. But the
modularity also had some advantages: whereas in a monolithic framework it would be easy to block the root
server with some page faults and difficult to resolve this problem, in our modular framework this was no
problem at all, as all complex functionality lies outside of the root server.

All of the above listed features have been implemented. We conclude that, even though the initial effort was
considerable (for example moving the networking subsystem out of the root server!), we are sure that the
efforts payed off in the long run: during the whole project period we never had to significantly modify
important aspects of the system due to design "errors".

It goes without saying that the system is far from being mature enough to be used in a productive
environment. Moreover, some important components are missing such as a privilege management system
for the SOS servers.

SOS Andreas Kägi, Christian Oberholzer SS08

4 Chapter I: Overview

Chapter I: Overview

1 Design Decisions
The initial framework provided for the Advanced Operating Systems course had a monolithic single threaded
design. All functionality resided within the root server.

But since L4 is a micro kernel and it looked like a cleaner solution, the decision was made to do a multi-
server design. This has some advantages:

The root server which is the only process in 1:1 mapped physical memory is quite small. In fact the
root server consists of only ~4000 lines of code including debugging functionality. It does not do
any dynamic memory allocation either which would otherwise be quite difficult to implement.

Since the SOS subsystems are implemented within separate servers the overall system design and
communication between the subsystems is clean and easy to understand.

The servers implementing the OS subsystems are typically quite small and easy to manage and
debug. They also reside within virtual memory enabling them to use dynamic memory allocation
with malloc and free.

Finally the idea of the micro kernel with its small trusted code base is carried from the kernel into
the whole operating system.

It also has some drawbacks

Since the design is heavily multi-threaded and parallel, care has to be taken to avoid deadlocks
and race conditions.

Interdependence between different servers may pose problems like deadlocks or the order in
which to start the servers.

It is more difficult to implement to implement a multi-server architecture, than a monolithic one.

Due to the advantages given the decision was made to design SOS using the multi-server paradigm.

SOS Andreas Kägi, Christian Oberholzer SS08

Chapter I: Overview 5

2 System Architecture
As a result of the multi-server design approach, the system architecture is quite complex. The following
diagram (Illustration 1) gives an overview of the architecture of SOS. It shows the different server threads
and dependencies between them. A dependency A → B is given if thread A sends an IPC message to thread
B in its lifetime. The dotted arrows denote dependencies that are less important in some sense: either a
dependency on the synchronisation server or a dependency on the task server due to thread creation alone.

Some noteworthy points:

The dependencies on the root server thread are drastically reduced compared to a monolithic
system. This is particularly apparent in this diagram. Other servers (task server and virtual file
server) are comparably important (when the importance is measured by the number of
dependencies on a thread).

This diagram nicely illustrates how we tackle the problem of possible deadlocks. Deadlocks may
occur when a thread A depends on a thread B (A wants to send IPC messages to B) and directly or
indirectly thread B also depends on thread A. In this scenario it is possible that the two threads
both wait for each other's reply message after having sent each other a message. The idea is that
deadlocks cannot occur if no two threads are mutually dependent. A mutual dependency
between two threads is seen in the diagram as a cycle. It is thus required that the
interdependence diagram is cycle-free.

These deadlock problems emerged particularly in the following parts of the SOS system:

I/O subsystem (subdivision of virtual file server, console server and NFS server into a bottom thread
and a top thread). This is discussed in more detail in the section on the I/O subsystem.

Task server/Pager server:
Both the task server depends on the pager server (to notify the pager server to free frames for a

SOS Andreas Kägi, Christian Oberholzer SS08

Illustration 1: Interdependence diagram of SOS server threads

6 Chapter I: Overview

killed process) and the pager server depends on the task server (various dependencies, say to
inform the task server about an allocated frame (stat statistics) or to create a new thread).
In this case the mutual dependency is resolved by making both servers two-threaded. After the
split the dependencies are as follows:
Task server cleanup thread Pager server main thread→
Pager server main thread Task server main thread→
Pager server swapout thread Task server main thread→
As can be seen, no cycles remain.

Timer client server/Timer:
Since the timer client server communicates with the timer driver server and vice versa, it was
necessary to split up the timer client server into two threads to prevent deadlocks. Like the I/O
servers it has a top thread and a bottom thread. The top thread receives requests from clients and
delegate them to the timer driver server. The bottom thread receives the answers from the timer
driver server and sends them back to the client.

The drawback of splitting up a server into multiple threads is the additional performance overhead due to
synchronisation. First, it results in a lot of IPC messages to the synchronisation server1. But more importantly,
it lowers the potential of possible parallelism by forcing sequentiality of the critical code sections.

3 SOS Servers

3.1 Root Server

L4 starts one process after it has successfully booted. This process is the only process allowed to execute
privileged kernel calls. It is called the root server. Since SOS is designed as multi-server operating system the
root server has only very few basic tasks.

First of all the root server provides functionality to access the privileged l4 kernel calls to other servers. It also
manages access to these privileged calls to prevent not authorized access that may compromise system
integrity.

Second the root server manages the physical memory and implements a basic pager for non-swapped
processes.

Third the root server boots the systems. It starts all the other operating system servers. Thus booting the
systems.

3.2 Name Server

To access SOS functionality it is necessary to send system calls to the appropriate system server. For example
all the file operations have to be sent to the file server. To do that the user process needs to know the L4
thread id of the system server able to process the user request.

The name server manages these thread ids. He provides simple naming functionality. A unique name can be
associated with whatever l4-thread-id the system chooses when a system server is started. The name servers
purpose is similar to that of a DNS on the internet.

To ensure that the name server is always reachable it has a well known l4 thread id. The root server
guarantees this.

3.3 Synchronisation Server

Within a heavily multi-threaded environment like SOS it is important to have powerful synchronisation

1 This problem could be weakened by using monitors or a similar synchronisation primitive that is
implemented inside a process alone.

SOS Andreas Kägi, Christian Oberholzer SS08

Chapter I: Overview 7

primitives. The synchronisation server provides two primitives allowing to synchronise processes and threads
as desired. The primitives are:

sos_mutex_t: A mutex can guard critical code sections that have to be synchronised between
threads and processes.

sos_event_t: Implements events between threads. Events are similiar to Windows events. One or
multiple threads may wait for an event to be signalled by another thread. When signalling, the
event may carry user specified data from sender to receiver.

SOS synchronises the system exclusively using these two primitives.

3.4 Task Server

The task server has the responsibility of creating and destroying processes and threads.

Additionally, user processes or other SOS servers may attach custom data to processes and threads using the
task server.

3.5 Networking Server (IXP Server)

The terms networking server and IXP server may be used interchangeably throughout the document.

Originally the networking server was designed to encapsulate access to the intel networking driver provided
by the project framework. But due to the high coupling between the intel networking driver, IP stack (lwip),
libserial and the NFS (network file system) it turned out to be impossible to extract the libraries built on top
of the intel driver out of this server within the small time frame given for the project.

The IXP server is therefore in contradiction to the chosen multi-server design a monolithic mixture of

Intel networking driver

IP stack (lwip)

libserial

NFS implementation

Despite the original design the IXP server encapsulates not one but all four mentioned libraries. Especially the
NFS part of the server is quite large.

3.6 Virtual File Server

The purpose of the virtual file server is to provide an abstraction from any particular file system
implementation. From a client perspective, it presents a uniform interface to access and modify files with
functionality similar to the Standard C I/O API. From the perspective of a file system implementor, the virtual
file server is a mediator that manages file meta data (file descriptors and open files table).

In SOS, there are two file system implementors: the console server and the NFS server.

3.7 Console Server

The console server is a simple backend to the virtual file server. It handles the files “stdout” to write and the
file “console” to read and write a simple console. The console used is GNU Netcat. The Netcat console must
be situated on host 192.168.0.1 and listen on UDP port 26706 (port AOS06).

Implementation-wise the serial library (the library communicating with Netcat) is part of the IXP server, so a
write call is delegated to it, whereas a read from Netcat is received by the IXP server and delegated to the
console server.

SOS Andreas Kägi, Christian Oberholzer SS08

8 Chapter I: Overview

3.8 NFS Server

The NFS server is the second back end to the virtual file server. It handles file I/O in combination with the IXP
server. Due to the fact that it has been impossible to extract the NFS implementation from the IXP server
this NFS server is quite minimalistic. It mainly forwards virtual file server calls to the IXP server and does some
bookkeeping for opened files.

3.9 Binary Server

The binary server's task is to load ELF binary files from the file system and to map the code and data
segments into the appropriate address space when the task server creates a new process.

3.10 Pager Server

To handle page swapping the operating system has to keep a relation between a process and all the pages
owned by the process. It has to remember whether a given page has already been swapped out or if it still
resides in physical memory. The implemented swapping algorithm may require the operating system to keep
even more data about processes, pages and/or frames.

The root server is unable to keep this information because the data is a consolidation of root server and task
server data. The solution to this problem is the pager server. It provides a more advanced pager which is
used for any user process. Through this new pager it enables the operating system to swap pages from
memory to disk storage and vice versa.

3.11 Timer Driver Server2

The timer driver server implements a timer driver (clock driver) for the timers that are part of NSLU2's
hardware. It provides a

current real-time clock value (time stamp), i.e. the current time in microseconds since booting. It is
implemented using the Time-Stamp Timer register (OST_TS) that is part of the Intel® IXP42X
Product Line.

client-programmable timer: a client can register with the timer driver server to be woken-up after
a certain delay (in microseconds). This is implemented using the General-Purpose Timer 1 registers
(OST_TIM1 and OST_TIM1_RL).

The timer driver server maintains a list of clients to be woken-up by IPC (priority queue). The hardware timer
register OST_TIM1 is always set for the earliest waiting client.

SOS clients do not directly communicate with the timer driver server. Instead the access is mediated by the
timer client server (to abstract from this particular driver).

As a bonus feature, SOS loads the timer driver server from the file system. This is not much of a problem as
the driver resides in virtual memory outside the root server anyway. The only concern is to how the driver
can access the memory-mapped hardware registers. It is achieved by the functions sos_iomap and
sos_iounmap that map a physical page uncached and one-to-one into a virtual address space.

3.12 Timer Client Server3

The timer client server provides an abstraction from the timer driver server. It provides uniform access to the
timer functionality for clients. It ensures that the interface remains stable, even when the backend driver
would change. Another reason for the separation of the timer client server from the timer driver server is the
need for a synchronous client interface: sos_timerserver_client_sleep (timer client server) blocks the
calling client until the sleep delay has expired, whereas register_timer (timer driver server) is an
asynchronous function that returns immediately but sends a wakeup IPC once the delay has expired.

2 For historical reasons the timer driver server is named sos_timerserver in the source code.
3 For historical reasons the timer client server is named sos_timerserver_client in the source code.

SOS Andreas Kägi, Christian Oberholzer SS08

Chapter II: System Details 9

Chapter I I : System Details

1 Boot Process
Booting an operating system is not an easy task. Especially since some components of the operating systems
may have circular dependencies on each other. The SOS boot process consists of roughly three parts. This
chapter describes them in detail.

1.1 Booting the L4 Kernel (Pistachio)

As a first step RedBoot bootloader copies the SOS system image into local memory using an SFTP
connection and starts the L4 kernel. The kernel boot process is not part of the advanced operating systems
course but it is important nevertheless. After the kernel has started successfully it loads the root server and
calls its main function. With the call to the root servers main function the boot process goes into its second
state.

1.2 Initializing the Root Server

This step involves the initialization of the root server and the transition to the last boot step. The root server
initialises two components:

The frame allocator is responsible for physical memory management. With the aid
of the frame allocator, the root server allocates physical memory for other
processes.
The pager is used to handle access violations of all SOS system servers.

When these components are initialised the root server starts a new thread. The so called init thread. This
thread carries out the third boot step.

1.3 Creating and Initialising System Servers

This final step creates and initialises all SOS system servers. They are created in this order:

a) Name server

b) Synchronisation server

c) Task server

d) IXP server

e) Virtual file server

f) Console server

g) NFS server

h) Binary Server

i) Pager server

j) Timer server

k) Timer server client

l) SOSH

A description of most of the servers mentioned can be found in one of the following chapters. The servers
are started in an order which satisfies the dependencies of any of the servers given. Even though special care
has been taken to design the components well, it was impossible to avoid all problems (For example the

SOS Andreas Kägi, Christian Oberholzer SS08

10 Chapter II: System Details

basic code to start processes still resides within the root server to start the first three servers).

With the last step l) the SOS shell is executed and the system ready to be used.

2 System Call Dispatching
The multi-server architecture of SOS makes system call (syscall) dispatching an easy task: The syscall IPC is
just sent to the server that handles the syscall.

As an example consider a client thread issueing the syscall:

in = open("console", FM_READ | FM_WRITE);

Client syscalls are defined in libsos/sos.h and implemented in libsos/syscalls.c. Most of the time, the
implementation just delegates the call to the client side implementation of the corresponding SOS server.
This is the case in the example, open merely delegates the call to sos_vfs_open (libsos/vfileserver.c).

This is a very prototypical syscall. First, the corresponding server(s) is/are retrieved, then an IPC with
appropriate arguments is fabricated an then delivered to corresponding server. Finally, the answer is
unpacked and the result returned.

Some remarks:

sos_vfileserver(&vfileserver) retrieves the L4 thread id of the virtual file server: It is cached in
a static variable; if not yet set, the thread id is retrieved by querying the nameserver for it using
the syscall sos_nameserver_resolve with argument "sos_vfileserver".

IPC messages are normaly sent using the helper functions from libsos/sosutil.h, in this case
sos_small_syscall_split. IPC messages are marshalled/unmarshalled by storing them in a special
struct specific to every IPC message. In our example, the struct
sos_syscall_vfileserver_open_ipc_t is defined as:

SOS Andreas Kägi, Christian Oberholzer SS08

int sos_vfs_open(
const char *path,
fmode_t mode,
fildes_t* new_file) {

int res = 0;
L4_ThreadId_t vfileserver;
res = sos_vfileserver(&vfileserver);
...

L4_ThreadId_t vfileserver_bottom;
res = sos_vfileserver_bottom(&vfileserver_bottom);
...
assert(sizeof(sos_syscall_vfileserver_open_ipc_t) ==

sizeof(sos_small_syscall_t));
sos_syscall_vfileserver_open_ipc_t ipc;
ipc.a.path_length = strlen(path);
ipc.a.path = path;
ipc.a.mode = mode;

res = sos_small_syscall_split(
vfileserver,
vfileserver_bottom,
SOS_SYSCALL_VFILESERVER_OPEN,
&ipc

);
...

// unpack answer
*new_file = ipc.r.new_file;
return ipc.r.retval;

}

Chapter II: System Details 11

The sosutil helper functions just prepare L4_Msg_t message, load all data from the struct into it,
load the message and send them with the appropriate L4 IPC operations.

For completeness the definition of sos_small_syscall_split follow:

SOS Andreas Kägi, Christian Oberholzer SS08

typedef union {

struct {
L4_Word_t path_length;
const char* path;
fmode_t mode;

} a; // return
struct {

int retval;
fildes_t new_file;

} r; // return
L4_Word_t regs[SOS_NUM_NATIVE_REGISTERS];

} sos_syscall_vfileserver_open_ipc_t;

int sos_small_syscall_split(
L4_ThreadId_t component,
L4_ThreadId_t reply_component,
L4_Word_t label,
void* ipc_ptr) {

sos_small_syscall_t* ipc = ipc_ptr;

L4_MsgTag_t tag;
L4_Msg_t msg;
L4_MsgClear(&msg);
for (L4_Word_t i = 0; i < SOS_NUM_NATIVE_REGISTERS; ++i) {

L4_MsgAppendWord(&msg, ipc->reg[i]);
}
L4_Set_MsgLabel(&msg, (label<<4));
L4_MsgLoad(&msg);

L4_ThreadId_t myself = L4_Myself();

// Closed send
tag = L4_Send(component);
if (L4_IpcFailed(tag)) {

...
}

// Closed receive
tag = L4_Receive(reply_component);
if (L4_IpcFailed(tag)) {

...
}

// At this point we have received the answer. unpack it
L4_MsgStore(tag, &msg); // Get the tag
if (TAG_SYSLAB(tag) != label) {

...
}

for (L4_Word_t i = 0; i < SOS_NUM_NATIVE_REGISTERS; ++i) {
ipc->reg[i] = L4_MsgWord(&msg, i);

}

return 0;
}

12 Chapter II: System Details

3 Virtual Memory Management
This chapter describes the SOS virtual memory management in greater detail. Virtual memory management
mainly consists of the swapping functionality which has a great impact on the overall design of the
operating system. The chapter is divided into three parts. The first part outlines the general design idea. The
second part is dedicated to the memory bookkeeping structure the hat. Finally, the third part describes the
implementation of the swapping functionality.

3.1 Separation of pagers

To avoid circular dependencies and difficult situations within the operating system core the design is built
around two basic ideas

Division into "user-level" and
"kernel-level" processes. In
general so called "kernel-level"
servers are non-swappable.
Therefore they can use the
basic pager implemented
within the root server. They are
guaranteed to be never
swapped out of main memory
and, for this reason, do not
create circular dependencies on
page faults. "User-level" tasks
may build upon this safe
infrastructure. They use a new
pager implemented by the
pager server and they must
never be involved within the
process of swapping. Therefore
file system drivers for example
have to be implemented
always on "kernel-level".
Special care has to be taken to
declare as few servers as
possible as "kernel-level"
servers since they occupy
system memory that may never
be swapped out. Illustration 1
visualises the distinction
between "user-level" and
"kernel-level" processes. The
drawback is that from the
perspective of resource usage
there may be better solutions
to solve the problem. But from
a software engineering and debugging perspective this layered approach has the advantage of
making everything easier to deal with.

The pager server always keeps a certain amount of spare frames. It starts to swap out frames
when the amount of free system memory drops below a certain swapping threshold (for example
250 frames = 1 MiB). It may happen that a "user-level" process allocates memory faster then the
system is able to swap out frames. In that case the system blocks the user thread whenever he
tries to allocate frames below a certain minimum threshold (for example 125 frames = 0.5 MiB).
This allows SOS to guarantee "kernel-level" threads the freedom to allocate memory during the
swap-out process. The solution with two thresholds allows user processes to carry on without
blocking whenever memory needs to be swapped out instead of blocking the whole system. This

SOS Andreas Kägi, Christian Oberholzer SS08

Illustration 2: Distinction between "user-level" and "kernel-
level" processes

Kernel level processes

Root server
pager

on pagefault

Name server

Synchronisation
server

Task server

Networking
server

Virtual file
server

Console server

NFS server Binary server

Pager server

Paged pager

User level processes

Timer driver
server

Timer client
server

sosh Any user
process

on pagefault

Chapter II: System Details 13

should result in noticeable performance gains.

3.2 Page-Table Structure

SOS's page table resides in virtual memory inside the pager server. The ability to do swapping is the only
reason that makes managing a separate page table for SOS necessary. Without swapping, one could rely on
the page table provided by L4 and use L4_GetStatus to retrieve the physical address corresponding to a
virtual address. Indeed, this is done in the unpaged_pager (non-swapping pager) within the root server.

Within the paged_pager (swapping pager) the page table is mainly used to keep track of which pages are
swapped out and which are not.

The page table is realised as a hash table with the following key and value types:

typedef struct {
sos_pid_t process;
L4_Word_t fpage_base;4

} sos_hat_key_t;

typedef struct {
L4_Word_t frame_addr;
/*
 * if swapfile_index == 0
 * frame not paged out
 * if swapfile_index > 0
 * frame paged out and index
 * into swapfile == swapfile_index-1
 */
L4_Word_t swapfile_index;

} sos_hat_value_t;

The page table was originally called a HAT (hash-anchor table) as it was used to do the inverse lookup
(virtual address → physical address) for the inverted page table (frame table) that was managed in the root
server.

Currently it is used only within the paged_pager to retrieve the frame address (physical address) of a given
virtual address and to determine whether that frame is swapped out or not.

One could implement the page table for each process separately. This would result in a more complex
implementation but would have the advantage of a speed-up in the implementation of
sos_pagerserver_hat_remove: This function is called when a process is deleted to remove all of its entries
from the page table. Currently, the whole page table has to be traversed for this.

3.3 Swapping

Swapping is done according to the second-chance page-replacement algorithm. This algorithm inserts all
pages residing in physical memory into a so called page queue. Whenever a new page is allocated it is
inserted at the end of the queue and marked as referenced. Whenever the pager server needs to swap out a
page it performs the following algorithm:

m) Take and remove the page at the front of the page queue.

n) If the element is marked as referenced erase the referenced bit and insert the page at the end of
the page queue.

o) If the element is not marked as referenced, swap it out.

p) Go back to a) if either no page has been swapped out or more pages have to be swapped out.

The actual work of swapping out a page is delegated to the so called swap out thread. The pager server
itself only swaps in pages or issues swap out order. Swap orders are delivered from the pager server to the
swap out thread using a synchronised queue. Pages residing within the swap out queue have to be handled

4 Virtual page number (Virtual address without the page offset bits)

SOS Andreas Kägi, Christian Oberholzer SS08

14 Chapter II: System Details

specially. If they are referenced before they are actually swapped out by the swap out thread they are later
reinserted into the page queue instead of swapping them out.

4 Process Subsystem
The Process subsystem of SOS the basic functions process_create, process_delete, process_wait,
process_wait_2, process_status, my_id, thread_create, thread_delete, thread_wait, thread_wait_2 and
my_thread_id. These functions are an extended set of deliverables for the SOS process management. The
extensions are kernel level threads and exit codes for processes and threads. The functions are implemented
within the statically linked SOS-library. They are implemented using specific task server system calls. This
chapter is further divided into an overview and detailed design descriptions.

4.1 Overview

A process (or task) is designed within SOS to represent a virtual address space and to be a container for a
collection of threads running within this virtual address space. The address space is divided into a region
containing the executable binary including its global data, a region to map memory pages from other
processes, a region for the heap and finally a region for every threads stack.

To run code within the process a new thread has to be started. The user may start as many threads within
the process as he would like (up to the limit of available thread ids).

Illustration 3 shows the relation between processes and threads as described above. Be aware that processes
are semantically different inside SOS to what they appear to be when looking at the process_create system
call. The differentiation between process and threads running within the process allow SOS to implement
kernel level threads quite easily.

SOS Andreas Kägi, Christian Oberholzer SS08

Illustration 3: relationship between processes and threads

Process 1

Thread 1 Thread 2 ... Thread n

Taskserver
global
data

Process 2

…

Process n

Chapter II: System Details 15

4.2 Clean-up Thread

Whenever a process is killed the operating system has to clean up some resources like frames allocated to
the process or files opened (and not yet closed) for the process. The clean-up thread is used for this purpose.
Whenever a process is killed, the task server enqueues a clean-up action to be processed by the clean-up
thread.

Currently the clean-up thread only frees frames allocated to the deleted process.

4.3 Processes

For each process the task server allocates a new structure and links it into a global linked list of processes.
The process structure is

The fields are

Field Name Usage

pid SOS Process Id

is_paged Flag indicating if this is a non-swapped or swapped process. This flag indicates which pager is
later assigned to any thread within this process.

first_thread_id Next process local thread id to assign to a new thread created within the process.

free_thread_ids A list of currently free process local thread ids.

associated_values A hashtable containing the process local storage. If the user wants to associate some
information with the process this information is stored within this table.

exec_name Name of the executable binary mapped into this process.

page_count The number of pages currently occupied by the process.

wait_event Any thread executing process_wait waits for the process using this event.

entry_point Pointer to the processes entry point.

text_address, text_size,
rodata_address, rodata_size,
data_address, data_size,
bss_address, bss_size

These fields store information about the layout of this processes executable binary.

first_thread, last_thread Linked list of threads contained within the process

SOS Andreas Kägi, Christian Oberholzer SS08

struct sos_taskserver_process {
sos_pid_t pid;
L4_Word_t is_paged;
L4_Word_t first_thread_id;
L4_Word_t current_thread_id;
sos_vector_t free_thread_ids;
sos_hashtable_t associated_values;
char* exec_name;
L4_Word_t page_count;
sos_event_t wait_event;
L4_Word_t entry_point;
L4_Word_t text_address;
L4_Word_t text_size;
L4_Word_t rodata_address;
L4_Word_t rodata_size;
L4_Word_t data_address;
L4_Word_t data_size;
L4_Word_t bss_address;
L4_Word_t bss_size;
// double linked list of all threads contained within this task
sos_taskserver_thread_t* first_thread;
sos_taskserver_thread_t* last_thread;
// links to prev/next task in global tasklist
sos_taskserver_process_t* next_task;
sos_taskserver_process_t* prev_task;

};

16 Chapter II: System Details

Field Name Usage

next_task, prev_task Links to the previous respectively next process within the global process list.

The system calls to manipulate processes are:

sos_taskserver_process_create

sos_taskserver_process_create_paged

sos_taskserver_process_nonpaged

sos_taskserver_process_kill

sos_taskserver_process_get_wait_event

sos_taskserver_process_get_id

sos_taskserver_process_ls_store

sos_taskserver_process_ls_lookup

sos_taskserver_process_ls_delete

sos_taskserver_process_set_binary_layout

sos_taskserver_process_get_binary_layout

4.4 Threads

SOS describes every runnable entity within the environment using a thread structure. The thread is
embedded within a process as desccribed above. The thread structure is

The fields are

Field Name Usage

task_info Pointer to the process description of the process owning this thread

tid SOS thread id

local_thread_id Local thread id. This id is zero based and only valid within the process context.

l4_thread_id The L4 thread id given to the L4 kernel.

associated_values A hashtable containing the thread local storage. If the user wants to associate some
information with the thread this information is stored within this table.

wait_event Any thread executing thread_wait waits for the thread using this event.

next_thread, prev_thread Links to the previous respectively next thread within the process thread list.

4.5 L4 Thread Id

L4 thread ids are composed of two parts. One part is the global id and the other part is a version field. The
task server manages global ids for SOS. It also misuses the version field to store the local thread id within
that field. The local id is needed to calculate a thread's stack position.

SOS Andreas Kägi, Christian Oberholzer SS08

struct sos_taskserver_thread {
sos_taskserver_process_t* task_info;
sos_tid_t tid;
L4_Word_t local_thread_id;
L4_ThreadId_t l4_thread_id;
sos_hashtable_t associated_values;
sos_event_t wait_event;
// links to prev/next thread in tasks threadlist
sos_taskserver_thread_t* next_thread;
sos_taskserver_thread_t* prev_thread;

}

Chapter II: System Details 17

5 Loading Binary Fi les using the Binary Server
When creating a new process, SOS has to ensure that the corresponding code and data segments from the
ELF file are mapped into the virtual address space of the new process at the correct addresses. However, SOS
allows creating an empty process with no threads in them (sos_taskserver_process_create). Thus, it is
easiest to let an external server do the work of loading and mapping the segments. This is the task of the
binary server.

A client syscall process_create performs the following steps:

1. It creates an empty process using the syscall sos_taskserver_process_create.

2. It loads the binary into the binary server using the syscall sos_binaryserver_load_binary.

3. The binary layout returned by the binary server is reported to the taskserver.

4. A thread is created (and started) within this process: sos_taskserver_tread_create.

The binary server is only responsible for step 2: It is given the name of an ELF binary and in turn has to report
back the layout of it (the start address and size of the code and data segments). First, it opens the file,
determines its size and allocates (private) memory for it. It then loads it into its private memory (using libelf)
and stores a reference to this loaded binary in an associative array (key = process id). Finally, it reports back
the desired layout information.

Later on, when the thread reads from its code section for the first time and thus triggers a page fault to the
swapping pager, the pager instructs the binary server to move the code and data segments into the faulting
address space: sos_binaryserver_move_to_l4_addr_space.

The binary server looks up the binary for the given process (from the associative array). It then maps the code
and data segments of the client address space into its own address space (sos_map_safe) and copies the
segments to the target location.

6 I/O Subsystem
The I/O subsystem of SOS is built in a POSIX-like style: It provides the familiar functions open, close, read and
write to access and modify files. All of the client I/O functions are synchronous, blocking operations.

open returns a file descriptor, a small non-negative integer, that can be used in subsequent I/O calls, like read
or write. A file descriptor is an indirect index into the system-wide table of open files (OFT). File descriptors
and the open files table are both managed by the central component of the IO subsystem: the virtual file
server.

The virtual file server is also the component that implements the above mentioned client I/O interface (see
Appendix for details), namely:

sos_vfs_open, sos_vfs_close

sos_vfs_read, sos_vfs_write

sos_vfs_seek, sos_vfs_tell

sos_vfs_dirent

sos_vfs_stat

Moreover, the virtual file server provides a second interface for implementors of a particular file system:

sos_vfs_add_implementor

sos_vfs_remove_implementor

Thus the virtual file server maintains a list of implementors. It then assigns an implementor to each opened
file to which it delegates all client requests that operate on that particular file. The assignment is done by
sending a can_handle_file IPC (containing the file name) to every known implementor. The first
implementor returning true is taken as the file's implementor.

SOS Andreas Kägi, Christian Oberholzer SS08

18 Chapter II: System Details

6.1 I/O dispatching using the virtual file server

The functioning of the virtual file server is best explained by example:

Illustration 4: Example dispatching of a read syscall

The example illustrates the dispatching of a read system call issued by a client thread. It assumes that the
client has already opened the file beforehand and holds a valid file descriptor (fd) for the corresponding file.
Some noteworthy comments are:

The virtual file server passes a fildes_info_t struct to the implementor. This allows the
implementor to store some process-specific information needed to handle the file with the file
descriptor. The info struct also contains the global open file index allowing the implementor to
uniquely refer to the file denoted by the descriptor.

Note how the synchronous blocking I/O client interface (POSIX style) is converted into
asynchronous operations by the virtual file server: Its top thread delegates the client read request
to the NFS server but sends no reply to the client. Instead, the reply is generated asynchronously
by the NFS server that passes it to the virtual file server (bottom thread!) which in turn passes it to
the client. This requires that

the client thread id is passed to the implementor and back from the implementor to the
virtual file server.5

the client threads sends its IPC to the top thread (IPC send) and receives the reply from the
bottom thread (closed IPC receive) instead of a normal IPC call.

6.2 File descriptors and the open files table

5 One could instead share the client thread ids in an associative array in the virtual file server. Beside an
additional managing overhead this would result in additional synchronisation between the two threads of
the virtual file server.

SOS Andreas Kägi, Christian Oberholzer SS08

Chapter II: System Details 19

Illustration 5: File descriptors table and OFT

File descriptors are indirect indices into the open files table (OFT). Indirect meaning that the file descriptor is
an index into the process-local file descriptors table that contains the global index into the OFT. The file
descriptors table is maintained by the virtual file server for every process. Currently, it is of fixed size
(PROCESS_MAX_FILES, defined in <sosh.h>). It resides in the virtual memory of the virtual file server. It is linked
to the process by means of the process-specific local storage area provided by the task server
(sos_taskserver_ thread_ls_store).

The OFT is a system-wide table storing information for all opened files. It resides in the virtual memory of the
virtual file server and is shared between its top and bottom threads. The OFT is manipulated by the following
operations:

Operation Location Description

open Top thread Creates a new OFT entry if none is present for the corresponding file, otherwise it
increments the reference count.

read/write Top thread Look up the implementor tid and delegating the call to the implementor.

add_implementor Bottom thread Sets the implementor tid of the OFT entries std„stdout“ and „stderr“ to the new
implementor if this is an stdio_handler.

remove_implementor Bottom thread Sets the implementor tid to 0 for any OFT entry having referenced the implementor to
remove.

completed_open Bottom thread If the open failed and the reference count of the OFT entry is 0, it is removed.

completed_close Bottom thread If the reference count of the OFT entry is 0, it is removed.

All operations on the OFT are synchronised since the OFT is accessed by multiple threads.

The OFT is implemented using three data structures:

a hash table mapping file names to global indices

a resizable vector (array) representing the actual open files table

a helper stack with free global indices

6.3 Handling of stdin, stdout and stderr

In SOS the standard file descriptors are named stdin_fd (fd 0), stdout_fd (fd 1) and stderr_fd (fd 2).

For stdout_fd an entry "stdout" is always present in the OFT. Initially, this entry references a dummy

SOS Andreas Kägi, Christian Oberholzer SS08

20 Chapter II: System Details

implementor (stdout_null) that discards all output. As soon as an stdio-handling implementor is registered
with the virtual file server, the implementor tid of the "stdout" entry is updated.

stdin_fd is currently not supported. Instead, a client process has to open the file "console" explicitly and use
the returned file descriptor for subsequent read syscalls.

stderr_fd is currently not supported either.

Both stdin_fd and stderr_fd were not part of the original libsos/sos.h interface and were planned
extensions that did not made it into SOS.

7 Networking Subsystem
The networking subsystem consists mainly of the IXP server and the NFS server. As mentioned within the
chapter about the different SOS servers, there is no clear line to draw between the tasks of the NFS server
and the IXP server due to the fact that it was impossible to factor the NFS library out of the IXP server. File
handling is covered by the chapter about the I/O subsystem. Therefore this chapter presents only two special
topics.

7.1 Migrate the Intel networking driver to a virtual address space

To port the Intel networking driver the following things need to be considered:

Changes have to be done inside the folder ixp_osal/os/l4aos.

Privileged calls to L4 have to be changed and delegated to the root server. The L4 calls typically
fail silently so care has to be taken to exchange all of them.

Finally the driver assumes a 1:1 physical to virtual memory mapping to do DMA transfers. This
leaves two choices. Either memory for DMA transfer may be allocated directly from the root server
still using 1:1 mapping like it is done within SOS or IX_OSAL_OS_MMU_VIRT_TO_PHYS and
IX_OSAL_OS_MMU_PHYS_TO_VIRT in IxOsalOs.h have to be changed to implement the correct
address translation.

7.2 Splitting large read calls

Since the lwip stack is really simple it
does not support splitting packets.
Therefore the IXP server may issue
only read or write requests filling at
most one packet at the time. To
limit the user to read at most blocks
of packet size limits the read/write
throughput to a few kilobytes per
second. This is clearly unsatisfactory.

Therefore SOS implements an
optimization for large read requests.
If the user process requests to read
more bytes than a packet can hold
the request is split into several read
fragments (as shown in illustration
6). For each fragment the IXP server
issues a read call to the NFS server.
Within the callback function the IXP
server fills the buffer from
successfully read fragments and
repeats read calls for failed nfs_read
calls. After the last fragment is

SOS Andreas Kägi, Christian Oberholzer SS08

Illustration 6: Split concept

User
Buffer

Pending read
operation

maps

Read fragment 1

Read fragment 2

Read fragment 3

Read fragment ...

Read fragment n

cover a
part of

IXP server

Networking File
System

nfs_read

nfs_read

nfs_read

nfs_read

nfs_read

Chapter II: System Details 21

successfully completed, the call will return.

SOS Andreas Kägi, Christian Oberholzer SS08

22 Chapter III: Limitations

Chapter I I I : Limitations
This section describes some shortcomings of the current SOS system. The limitations are loosely ordered by
importance.

Limitation Description

Missing priviledges Currently, all SOS server threads have full access to the root server. That is, they can call any
priviledges operation that the root server exposes as a syscall. This is clearly unsatisfactory. Instead,
SOS should have some privilege management system that give certain restricted priviledge to the
servers and enforces them to not do other unallowed priviledged calls.

Overburden IXP server The IXP server currently contains code for the NIC driver (ixp_osal), the IP stack (lwip), NFS and the
serial library.
The goal would be to split it, such that the IP stack resided in its separate server, independent of any
network device.
Moreover, the NFS and serial libaries should be modified such that they communicate with the IP
stack server via IPC messages (and not with the IXP server).

ixp_osal DMA memory hack Currently, ixp_osal relies on the availability of physical memory (consequtive memory) of arbitrary
size. This resulted in a special treatment in the root server:
sos_rootserver_dma_malloc_hack

Exit codes and process_wait It would be clearly desirable, if process_wait returned the exit code of the process's main
function. For this purpose, SOS provides process_wait_2 that returns the exit code. The problem
arises when the called process terminates before the calling process can initiate process_wait_2.
In this case, the exit code is lost. With the current implementation it is not possible to resolve this
issue, so a new reimplementation would be necessary.

Maximum file name length In SOS, the length of a file name is restricted to be smaller or equal to MAX_FILENAME_LENGTH.
This constant is defined in libsos/vfileserver.h

Maximum number of entries in
the
file descriptor table

The size of the file descriptor table is currently limited. No more than PROCESS_MAX_FILES
(libsos/sos.h) can be opened at the same time by any process.

1.1 Bugs

This section describes some unresolved bugs within SOS or libraries that SOS depends on.

Bug Description

Too many parallel reads If too many parallel reads are done simultaneously, the lwip stack runs of out memory:

I

Assertion "mem_free: mem->used" failed at line 284 in libs/lwip/core/mem.c

No cleanup in
remove_implementor
(vfileserver.c)

When an implementor is removed from the virtual file server, all files having this implementor
associated should by invalidated in some way, such that subsequent read/write calls will fail.
Alternatively another implementor that is able to handle the files could be associated to them.

Correct stderr/stdin handling The virtual file server should correctly handle stderr and stdin. stderr should be a valid file
descriptor for any process (the corresponding file is automatically opened), whereas stdin
should only be valid for the process having opened the file “console” in read mode.

Virtual file server memory leak The virtual file server has to free the file descriptors table for a process after it has terminated. It
should also close any files that remained open for the process. The task server would have to
notify the virtual file server in its cleanup thread. As the reference to the file descriptors table is
stored in the task local storage of the corresponding process, the taskserver would have to
introduce some "zombie" mechanism instead of directly destroying the process.

Too large bss section When the bss section of an ELF binary is too large, SOS fails correctly running the code of this
binary.

IPC/name server problem Spurious error with registering/querying the name server: Sometimes incomplete IPC messages
were fabricated that contained only part of the name (string) to register/query. Apparently, the
problem was not the actual send operation of the IPC but the L4 message was already
corrupted when loaded into the message registers, even though the structure

SOS Andreas Kägi, Christian Oberholzer SS08

Chapter III: Limitations 23

Bug Description

Wrong server configuaration When the server (192.168.0.1) has no running inet daemon or nfs-server, SOS fails to start and
prints no appropriate error message.

Frame locking/unlocking not done Problems occur whenever the pager server swaps out frames mapped into multiple address
spaces. In such a case the frame can get freed but still mapped into server address spaces. Thus
if the frame is assigned to another process the processes data may be overwritten by the invalid
mapping within the server address space. Even though there is code to handle this case tests
have proven it to not work properly.

SOS Andreas Kägi, Christian Oberholzer SS08

24 Chapter IV: Testing

Chapter IV: Testing
The correctness of all implemented features is, as good as possible during the short time available for
testing, verified using two different methods. Firstly there is verification functionality built into SOS and
secondly there are some explicit test programs to test SOS. The following sections describe those two
approaches.

1 Built- In Tests
This is done through various verification methods executed during the boot process and using assert
statements during the code execution. Using lots of assertions to ensure that assumptions about the code
are correct helped to prevent many bugs. Built-In Tests are

q) sosroot_verification_nameserver (sos/verification.c): This Verification is run after the name server
has been started. It checks that the name server is working correctly. Namely one can insert a new
entry, look it up and remove it afterwards.

r) sosroot_verification_localstorage (sos/verification.c): This verification is run after the task server has
been started. It verifies the availability of process local storage.

s) sosroot_verification_syncserver (sos/verification.c): This verification is run after the synchronisation
server has been started. It verifies the functionality of the two synchronisation primitives used
within SOS. The event and the mutex structures.

t) hat_test (sos_pagerserver/hat.c): This verification is run after the SOS page table is initialised. It
verifies that inserting, removing and querying items from the page table properly work.

u) assertions (sos_timerserver/timerserver.c): This verification asserts that the structs within the
timer server used to represent the timer driver's registers are correctly aligned.

v) sos_test_atomic_assignments (libs/sos/include/test.c): This verification asserts that the atomic
assignment functionality (which is written in Assembler) works properly.

w) sos_test_hashtable (libs/sos/include/test.c): This verification asserts that the iterator that is
implemented for the hash table works properly.

2 Test Programs
Secondly there are some explicit test programs written to verify special features, test that features work, that
they work together or just that the system works correctly under stress situations. The tests are:

2.1 test_all

The program test_all is an approach to do pseudo-automatic testing. It consists of a set of other programs to
execute and the expected return codes. It then executes all test programs (one after each other) and collects
the programs return codes. It then prints a summary of all executions comparing the expected results with
the actual results. This test gave the ability to verify that the system still work as expected after having
changes and bugfixes. Additionally this test program is another opportunity to do system stress tests. Instead
of starting the tests sequential the test would have the possibility to start all processes at once and thus
enable some more system stress testing.

2.2 test_parallel_reads

This test verifies the system to work correctly under the load of lots of parallel large reads. It revealed a bug
within page mapping algorithm.

SOS Andreas Kägi, Christian Oberholzer SS08

Chapter IV: Testing 25

2.3 test_threads

Kernel level threads make it easier to write tests for parallel functionality since only one process (application)
has to be written and started instead of many. This test verifies that kernel level threads can be started and
executed as designed within the application programming interface. This test revealed a deadlock problem
between the timer client server and the timer driver server.

2.4 test_parallel_timestamps

In response to the deadlock problem between the timer servers, this test was introduced. It stresses the timer
servers heavily by issueing a lot of parallel time stamp requests from multiple threads.

2.5 test_large_read and test_large_alloc

It was feared that terminating a process that is in the middle of a read syscall could be hazardous. These two
tests were introduced to test that. test_large_read just reads from a large file of the NFS share. At the same
time test_large_alloc has to be started. It allocates a large array of memory and reads from it. Since for
debugging purposes a freshly allocated frame is always initialised with all zeroes, test_large_alloc asserts,
that the data it reads from the large array is all zero. In combination, it can be tested whether terminating a
process blocking in an active system call leads to corruption of memory.

2.6 test_swapserver

This test verifies that the pager server correctly swaps out and swaps in frames. It allocates a chunk of
memory which is bigger than the available amount of physical memory. This buffer gets filled with some
reconstructible data. It is later verified that still contains the correct data. Through writing to the buffer and
reading from the buffer, the pager server is forced to swap frames dynamically.

3 Conclusion
With this approach to test SOS it was possible to find and eliminate many bugs. A lot more have been
prevented through the consisent use of assert statements and the built-in verification functions. Even though
a lot of bugs have been discovered, the test cases cover only a small part of the overall system. Therefore
many more tests would be needed to verify the system to work correctly in special situations or under heavy
load.

SOS Andreas Kägi, Christian Oberholzer SS08

	Chapter I:Overview
	1Design Decisions
	2System Architecture
	3SOS Servers
	3.1Root Server
	3.2Name Server
	3.3Synchronisation Server
	3.4Task Server
	3.5Networking Server (IXP Server)
	3.6Virtual File Server
	3.7Console Server
	3.8NFS Server
	3.9Binary Server
	3.10Pager Server
	3.11Timer Driver Server2
	3.12Timer Client Server3

	Chapter II:System Details
	1Boot Process
	1.1Booting the L4 Kernel (Pistachio)
	1.2Initializing the Root Server
	1.3Creating and Initialising System Servers

	2System Call Dispatching
	3Virtual Memory Management
	3.1Separation of pagers
	3.2Page-Table Structure
	3.3Swapping

	4Process Subsystem
	4.1Overview
	4.2Clean-up Thread
	4.3Processes
	4.4Threads
	4.5L4 Thread Id

	5Loading Binary Files using the Binary Server
	6I/O Subsystem
	6.1I/O dispatching using the virtual file server
	6.2File descriptors and the open files table
	6.3Handling of stdin, stdout and stderr

	7Networking Subsystem
	7.1Migrate the Intel networking driver to a virtual address space
	7.2Splitting large read calls

	Chapter III:Limitations
	1.1Bugs

	Chapter IV:Testing
	1Built-In Tests
	2Test Programs
	2.1test_all
	2.2test_parallel_reads
	2.3test_threads
	2.4test_parallel_timestamps
	2.5test_large_read and test_large_alloc
	2.6test_swapserver

	3Conclusion

