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Abstract
This  report  documents  a  simple  operating  system  (SOS)  that  was  built  as  a  course  project  within  an 
Advanced Operating Systems course. The goal was to build an operating system that builds upon the L4 
micro kernel. SOS should feature process management with multiple processes residing in virtual memory, 
paging and swapping, console access (GNU Netcat), file I/O (NFS) and a clock driver. SOS was required to 
implement a simple POSIX-style client interface enabling the user to do I/O, process- and time management.

The decision was made to design SOS, very much in spirit of the L4 micro kernel, as a multi-server multi-
threaded operating system. This lead to a more complex system but in return gave better modularity and 
maintainability. The complexity of the system was particularly apparent in the need to carefully design the 
interdependencies between different SOS server threads in order to prevent deadlocking the system. But the 
modularity also had some advantages: whereas in a monolithic framework it would be easy to block the root 
server with some page faults and difficult to resolve this problem, in our modular framework this was no 
problem at all, as all complex functionality lies outside of the root server.

All of the above listed features have been implemented. We conclude that, even though the initial effort was 
considerable (for example moving the networking subsystem out of the root server!), we are sure that the 
efforts  payed off in the long run: during the whole project period we never had to significantly modify 
important aspects of the system due to design "errors".

It  goes  without  saying  that  the  system  is  far  from being  mature  enough to  be  used  in  a  productive 
environment. Moreover, some important components are missing such as a privilege management system 
for the SOS servers.
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4 Chapter I: Overview

Chapter I: Overview

1 Design Decisions
The initial framework provided for the Advanced Operating Systems course had a monolithic single threaded 
design. All functionality resided within the root server. 

But since L4 is a micro kernel and it looked like a cleaner solution, the decision was made to do a multi-
server design. This has some advantages:

The root server which is the only process in 1:1 mapped physical memory is quite small. In fact the 
root server consists of only ~4000 lines of code including debugging functionality. It does not do 
any dynamic memory allocation either which would otherwise be quite difficult to implement.

Since the SOS subsystems are implemented within separate servers the overall system design and 
communication between the subsystems is clean and easy to understand.

The servers implementing the OS subsystems are typically quite small and easy to manage and 
debug. They also reside within virtual memory enabling them to use dynamic memory allocation 
with malloc and free.

Finally the idea of the micro kernel with its small trusted code base is carried from the kernel into 
the whole operating system.

It also has some drawbacks

Since the design is heavily multi-threaded and parallel, care has to be taken to avoid deadlocks 
and race conditions.

Interdependence between different  servers  may pose problems like deadlocks or the order in 
which to start the servers.

It is more difficult to implement to implement a multi-server architecture, than a monolithic one.

Due to the advantages given the decision was made to design SOS using the multi-server paradigm.
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2 System Architecture
As a result of the multi-server design approach, the system architecture is quite complex. The following 
diagram (Illustration 1) gives an overview of the architecture of SOS. It shows the different server threads 
and dependencies between them. A dependency A → B is given if thread A sends an IPC message to thread 
B in its lifetime. The dotted arrows denote dependencies that are less important in some sense: either a 
dependency on the synchronisation server or a dependency on the task server due to thread creation alone.

Some noteworthy points:

The dependencies on the root server thread are drastically  reduced compared to a monolithic 
system. This  is particularly  apparent in this diagram. Other servers  (task server and virtual  file 
server)  are  comparably  important  (when  the  importance  is  measured  by  the  number  of 
dependencies on a thread).

This diagram nicely illustrates how we tackle the problem of possible deadlocks. Deadlocks may 
occur when a thread A depends on a thread B (A wants to send IPC messages to B) and directly or 
indirectly thread B also depends on thread A. In this scenario it is possible that the two threads 
both wait for each other's reply message after having sent each other a message. The idea is that 
deadlocks  cannot  occur  if  no  two  threads  are  mutually  dependent.  A  mutual  dependency 
between  two  threads  is  seen  in  the  diagram  as  a  cycle.  It  is  thus  required  that  the 
interdependence diagram is cycle-free.

These deadlock problems emerged particularly in the following parts of the SOS system:

I/O subsystem (subdivision of virtual file server, console server and NFS server into a bottom thread 
and a top thread). This is discussed in more detail in the section on the I/O subsystem.

Task server/Pager server:  
Both the task server depends on the pager server (to notify the pager server to free frames for a 
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6 Chapter I: Overview

killed process) and the pager server depends on the task server (various dependencies, say to 
inform the task server about an allocated frame (stat statistics) or to create a new thread).  
In this case the mutual dependency is resolved by making both servers two-threaded. After the 
split the dependencies are as follows:
Task server cleanup thread  Pager server main thread→
Pager server main thread  Task server main thread→
Pager server swapout thread  Task server main thread→
As can be seen, no cycles remain.

Timer client server/Timer:
Since the timer client server communicates with the timer driver server  and vice versa,  it  was 
necessary to split up the timer client server into two threads to prevent deadlocks. Like the I/O 
servers it has a top thread and a bottom thread. The top thread receives requests from clients and 
delegate them to the timer driver server. The bottom thread receives the answers from the timer 
driver server and sends them back to the client.

The drawback of splitting up a server into multiple threads is the additional performance overhead due to 
synchronisation. First, it results in a lot of IPC messages to the synchronisation server1. But more importantly, 
it lowers the potential of possible parallelism by forcing sequentiality of the critical code sections. 

3 SOS Servers

3.1 Root Server

L4 starts one process after it has successfully booted. This process is the only process allowed to execute 
privileged kernel calls. It is called the root server. Since SOS is designed as multi-server operating system the 
root server has only very few basic tasks.

First of all the root server provides functionality to access the privileged l4 kernel calls to other servers. It also 
manages access to these privileged calls to prevent not authorized access that may compromise system 
integrity.

Second the root  server  manages  the physical  memory  and implements  a  basic  pager  for  non-swapped 
processes.

Third the root server boots the systems. It starts all the other operating system servers. Thus booting the 
systems.

3.2 Name Server

To access SOS functionality it is necessary to send system calls to the appropriate system server. For example 
all the file operations have to be sent to the file server. To do that the user process needs to know the L4 
thread id of the system server able to process the user request.

The name server manages these thread ids. He provides simple naming functionality. A unique name can be 
associated with whatever l4-thread-id the system chooses when a system server is started. The name servers 
purpose is similar to that of a DNS on the internet.

To ensure that  the name server  is  always  reachable  it  has  a well  known l4  thread id.  The root  server 
guarantees this. 

3.3 Synchronisation Server

Within  a  heavily  multi-threaded  environment like  SOS it  is  important  to  have powerful  synchronisation 

1 This problem could be weakened by using monitors or a similar synchronisation primitive that is 
implemented inside a process alone.
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primitives. The synchronisation server provides two primitives allowing to synchronise processes and threads 
as desired. The primitives are:

sos_mutex_t: A mutex can guard critical  code sections that have to be synchronised between 
threads and processes.

sos_event_t: Implements events between threads. Events are similiar to Windows events. One or 
multiple threads may wait for an event to be signalled by another thread. When signalling, the 
event may carry user specified data from sender to receiver. 

SOS synchronises the system exclusively using these two primitives.

3.4 Task Server

The task server has the responsibility of creating and destroying processes and threads.

Additionally, user processes or other SOS servers may attach custom data to processes and threads using the 
task server.

3.5 Networking Server (IXP Server)

The terms networking server and IXP server may be used interchangeably throughout the document.

Originally the networking server was designed to encapsulate access to the intel networking driver provided 
by the project framework. But due to the high coupling between the intel networking driver, IP stack (lwip), 
libserial and the NFS (network file system) it turned out to be impossible to extract the libraries built on top 
of the intel driver out of this server within the small time frame given for the project. 

The IXP server is therefore in contradiction to the chosen multi-server design a monolithic mixture of

Intel networking driver

IP stack (lwip)

libserial

NFS implementation

Despite the original design the IXP server encapsulates not one but all four mentioned libraries. Especially the 
NFS part of the server is quite large.

3.6 Virtual File Server

The  purpose  of  the  virtual  file  server  is  to  provide  an  abstraction  from  any  particular  file  system 
implementation. From a client perspective, it presents a uniform interface to access and modify files with 
functionality similar to the Standard C I/O API. From the perspective of a file system implementor, the virtual 
file server is a mediator that manages file meta data (file descriptors and open files table).

In SOS, there are two file system implementors: the console server and the NFS server.

3.7 Console Server

The console server is a simple backend to the virtual file server. It handles the files “stdout” to write and the 
file “console” to read and write a simple console. The console used is GNU Netcat. The Netcat console must 
be situated on host 192.168.0.1 and listen on UDP port 26706 (port AOS06).

Implementation-wise the serial library (the library communicating with Netcat) is part of the IXP server, so a 
write call is delegated to it, whereas a read from Netcat is received by the IXP server and delegated to the 
console server.

SOS Andreas Kägi, Christian Oberholzer SS08
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3.8 NFS Server

The NFS server is the second back end to the virtual file server. It handles file I/O in combination with the IXP 
server. Due to the fact that it has been impossible to extract the NFS implementation  from the IXP server 
this NFS server is quite minimalistic. It mainly forwards virtual file server calls to the IXP server and does some 
bookkeeping for opened files.

3.9 Binary Server

The binary server's  task is  to load ELF binary files  from the file  system and to map the code and data 
segments into the appropriate address space when the task server creates a new process.

3.10 Pager Server

To handle page swapping the operating system has to keep a relation between a process and all the pages 
owned by the process. It has to remember whether a given page has already been swapped out or if it still 
resides in physical memory. The implemented swapping algorithm may require the operating system to keep 
even more data about processes, pages and/or frames.

The root server is unable to keep this information because the data is a consolidation of root server and task 
server data. The solution to this problem is the pager server. It provides a more advanced pager which is 
used for any user process. Through this new pager it enables the operating system to swap pages from 
memory to disk storage and vice versa.

3.11 Timer Driver Server2

The timer  driver  server  implements  a timer  driver  (clock driver)  for the timers  that are part of NSLU2's 
hardware. It provides a 

current real-time clock value (time stamp), i.e. the current time in microseconds since booting. It is 
implemented using the Time-Stamp Timer  register  (OST_TS)  that  is  part  of  the Intel® IXP42X 
Product Line.

client-programmable timer: a client can register with the timer driver server to be woken-up after 
a certain delay (in microseconds). This is implemented using the General-Purpose Timer 1 registers 
(OST_TIM1 and OST_TIM1_RL).

The timer driver server maintains a list of clients to be woken-up by IPC (priority queue). The hardware timer 
register OST_TIM1 is always set for the earliest waiting client. 

SOS clients do not directly communicate with the timer driver server. Instead the access is mediated by the 
timer client server (to abstract from this particular driver).

As a bonus feature, SOS loads the timer driver server from the file system. This is not much of a problem as 
the driver resides in virtual memory outside the root server anyway. The only concern is to how the driver 
can  access  the  memory-mapped  hardware  registers.  It  is  achieved  by  the  functions  sos_iomap and 
sos_iounmap that map a physical page uncached and one-to-one into a virtual address space.

3.12 Timer Client Server3

The timer client server provides an abstraction from the timer driver server. It provides uniform access to the 
timer functionality for clients. It ensures that the interface remains stable, even when the backend driver 
would change. Another reason for the separation of the timer client server from the timer driver server is the 
need  for  a  synchronous  client  interface:  sos_timerserver_client_sleep (timer  client  server)  blocks  the 
calling  client  until  the  sleep  delay  has  expired,  whereas  register_timer (timer  driver  server)  is  an 
asynchronous function that returns immediately but sends a wakeup IPC once the delay has expired.

2 For historical reasons the timer driver server is named sos_timerserver in the source code.
3 For historical reasons the timer client server is named sos_timerserver_client in the source code.
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Chapter I I : System Details

1 Boot Process
Booting an operating system is not an easy task. Especially since some components of the operating systems 
may have circular dependencies on each other. The SOS boot process consists of roughly three parts. This 
chapter describes them in detail.

1.1 Booting the L4 Kernel (Pistachio)

As  a  first  step  RedBoot  bootloader  copies  the  SOS  system  image  into  local  memory  using  an  SFTP 
connection and starts the L4 kernel. The kernel boot process is not part of the advanced operating systems 
course but it is important nevertheless. After the kernel has started successfully it loads the root server and 
calls its main function. With the call to the root servers main function the boot process goes into its second 
state.

1.2 Initializing the Root Server

This step involves the initialization of the root server and the transition to the last boot step. The root server 
initialises two components:

The frame allocator is responsible for physical memory management. With the aid 
of the frame allocator, the root server allocates physical memory for other 
processes.
The pager is used to handle access violations of all SOS system servers.

When these components are initialised the root server starts a new thread. The so called  init thread. This 
thread carries out the third boot step.

1.3 Creating and Initialising System Servers

This final step creates and initialises all SOS system servers. They are created in this order:

a) Name server

b) Synchronisation server

c) Task server

d) IXP server

e) Virtual file server

f) Console server

g) NFS server

h) Binary Server

i) Pager server

j) Timer server

k) Timer server client

l) SOSH

A description of most of the servers mentioned can be found in one of the following chapters. The servers 
are started in an order which satisfies the dependencies of any of the servers given. Even though special care 
has been taken to design the components well, it was impossible to avoid all problems (For example the 
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basic code to start processes still resides within the root server to start the first three servers).

With the last step l) the SOS shell is executed and the system ready to be used.

2 System Call Dispatching
The multi-server architecture of SOS makes system call (syscall) dispatching an easy task: The syscall IPC is 
just sent to the server that handles the syscall.

As an example consider a client thread issueing the syscall:

in = open("console", FM_READ | FM_WRITE);

Client  syscalls  are  defined  in  libsos/sos.h  and  implemented  in  libsos/syscalls.c.  Most  of  the  time,  the 
implementation just delegates the call to the client side implementation of the corresponding SOS server. 
This is the case in the example, open merely delegates the call to sos_vfs_open (libsos/vfileserver.c).

This  is  a  very  prototypical  syscall.  First,  the  corresponding  server(s)  is/are  retrieved,  then  an  IPC  with 
appropriate  arguments  is  fabricated  an  then  delivered  to  corresponding  server.  Finally,  the  answer  is 
unpacked and the result returned. 

Some remarks:

sos_vfileserver(&vfileserver) retrieves the L4 thread id of the virtual file server: It is cached in 
a static variable; if not yet set, the thread id is retrieved by querying the nameserver for it using 
the syscall sos_nameserver_resolve with argument "sos_vfileserver".

IPC  messages  are  normaly  sent  using  the  helper  functions  from libsos/sosutil.h,  in  this  case 
sos_small_syscall_split. IPC messages are marshalled/unmarshalled by storing them in a special 
struct specific to every IPC message. In our example, the struct  
sos_syscall_vfileserver_open_ipc_t is defined as:

SOS Andreas Kägi, Christian Oberholzer SS08

int sos_vfs_open(
const char *path, 
fmode_t mode, 
fildes_t* new_file) {

int res = 0;
L4_ThreadId_t vfileserver;
res = sos_vfileserver(&vfileserver);
...

L4_ThreadId_t vfileserver_bottom;
res = sos_vfileserver_bottom(&vfileserver_bottom);
...
assert(sizeof(sos_syscall_vfileserver_open_ipc_t) == 

sizeof(sos_small_syscall_t));
sos_syscall_vfileserver_open_ipc_t ipc;
ipc.a.path_length = strlen(path);
ipc.a.path = path;
ipc.a.mode = mode;

res = sos_small_syscall_split(
vfileserver, 
vfileserver_bottom, 
SOS_SYSCALL_VFILESERVER_OPEN, 
&ipc

);
...

// unpack answer
*new_file = ipc.r.new_file;
return ipc.r.retval;

}
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The sosutil helper functions just prepare L4_Msg_t message, load all data from the struct into it, 
load the message and send them with the appropriate L4 IPC operations.

For completeness the definition of sos_small_syscall_split follow:

SOS Andreas Kägi, Christian Oberholzer SS08

typedef union {

struct {
L4_Word_t path_length;
const char* path;
fmode_t mode;

} a; // return
struct {

int retval;
fildes_t new_file;

} r; // return
L4_Word_t regs[SOS_NUM_NATIVE_REGISTERS];

} sos_syscall_vfileserver_open_ipc_t;

int sos_small_syscall_split(
L4_ThreadId_t component,
L4_ThreadId_t reply_component,
L4_Word_t label,
void* ipc_ptr) {

sos_small_syscall_t* ipc = ipc_ptr;

L4_MsgTag_t tag;
L4_Msg_t msg;
L4_MsgClear(&msg);
for (L4_Word_t i = 0; i < SOS_NUM_NATIVE_REGISTERS; ++i) {

L4_MsgAppendWord(&msg, ipc->reg[i]);
}
L4_Set_MsgLabel(&msg, (label<<4));
L4_MsgLoad(&msg);

L4_ThreadId_t myself = L4_Myself();

// Closed send
tag = L4_Send(component);
if (L4_IpcFailed(tag)) {

...
}

// Closed receive
tag = L4_Receive(reply_component);
if (L4_IpcFailed(tag)) {

...
}

// At this point we have received the answer. unpack it
L4_MsgStore(tag, &msg); // Get the tag
if (TAG_SYSLAB(tag) != label) {

...
}

for (L4_Word_t i = 0; i < SOS_NUM_NATIVE_REGISTERS; ++i) {
ipc->reg[i] = L4_MsgWord(&msg, i);

}

return 0;
}
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3 Virtual Memory Management
This chapter describes the SOS virtual memory management in greater detail. Virtual memory management 
mainly  consists  of  the  swapping  functionality  which  has  a  great  impact  on  the  overall  design  of  the 
operating system. The chapter is divided into three parts. The first part outlines the general design idea. The 
second part is dedicated to the memory bookkeeping structure the hat. Finally, the third part describes the 
implementation of the swapping functionality.

3.1 Separation of pagers

To avoid circular dependencies and difficult situations within the operating system core the design is built 
around two basic ideas

Division  into  "user-level"  and 
"kernel-level"  processes.  In 
general so called "kernel-level" 
servers  are  non-swappable. 
Therefore  they  can  use  the 
basic  pager  implemented 
within the root server. They are 
guaranteed  to  be  never 
swapped out of main memory 
and,  for  this  reason,  do  not 
create circular dependencies on 
page faults.  "User-level" tasks 
may  build  upon  this  safe 
infrastructure. They use a new 
pager  implemented  by  the 
pager  server  and  they  must 
never  be  involved  within  the 
process of swapping. Therefore 
file system drivers for example 
have  to  be  implemented 
always  on  "kernel-level". 
Special care has to be taken to 
declare  as  few  servers  as 
possible  as  "kernel-level" 
servers  since  they  occupy 
system memory that may never 
be swapped out. Illustration  1 
visualises  the  distinction 
between  "user-level"  and 
"kernel-level"  processes.  The 
drawback  is  that  from  the 
perspective  of  resource  usage 
there  may  be  better  solutions 
to solve the problem. But from 
a software engineering and debugging perspective this layered approach has the advantage of 
making everything easier to deal with.

The pager server always keeps a certain amount of spare frames. It starts to swap out frames 
when the amount of free system memory drops below a certain swapping threshold (for example 
250 frames = 1 MiB). It may happen that a "user-level" process allocates memory faster then the 
system is able to swap out frames. In that case the system blocks the user thread whenever he 
tries to allocate frames below a certain minimum threshold (for example 125 frames = 0.5 MiB). 
This allows SOS to guarantee "kernel-level" threads the freedom to allocate memory during the 
swap-out process. The solution with two thresholds allows user processes to carry on without 
blocking whenever memory needs to be swapped out instead of blocking the whole system. This 
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Illustration 2: Distinction between "user-level" and "kernel-
level" processes
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should result in noticeable performance gains.

3.2 Page-Table Structure

SOS's page table resides in virtual memory inside the pager server. The ability to do swapping is the only 
reason that makes managing a separate page table for SOS necessary. Without swapping, one could rely on 
the page table provided by L4 and use  L4_GetStatus to retrieve the physical address corresponding to a 
virtual address. Indeed, this is done in the unpaged_pager (non-swapping pager) within the root server. 

Within the paged_pager (swapping pager) the page table is mainly used to keep track of which pages are 
swapped out and which are not. 

The page table is realised as a hash table with the following key and value types:

typedef struct {
sos_pid_t process;
L4_Word_t fpage_base;4

} sos_hat_key_t;

typedef struct {
L4_Word_t frame_addr;
/*
 * if swapfile_index == 0
 * frame not paged out
 * if swapfile_index > 0
 * frame paged out and index
 * into swapfile == swapfile_index-1
 */
L4_Word_t swapfile_index;

} sos_hat_value_t;

The page table was originally called a HAT (hash-anchor table) as it was used to do the inverse lookup 
(virtual address → physical address) for the inverted page table (frame table) that was managed in the root 
server. 

Currently it is used only within the paged_pager to retrieve the frame address (physical address) of a given 
virtual address and to determine whether that frame is swapped out or not. 

One could implement the page table for each process separately.  This would result  in a more complex 
implementation  but  would  have  the  advantage  of  a  speed-up  in  the  implementation  of 
sos_pagerserver_hat_remove: This function is called when a process is deleted to remove all of its entries 
from the page table. Currently, the whole page table has to be traversed for this.

3.3 Swapping

Swapping is done according to the second-chance page-replacement algorithm. This algorithm inserts all 
pages residing in physical memory into a so called page queue. Whenever a new page is allocated it is 
inserted at the end of the queue and marked as referenced. Whenever the pager server needs to swap out a 
page it performs the following algorithm:

m) Take and remove the page at the front of the page queue.

n) If the element is marked as referenced erase the referenced bit and insert the page at the end of 
the page queue.

o) If the element is not marked as referenced, swap it out.

p) Go back to a) if either no page has been swapped out or more pages have to be swapped out.

The actual work of swapping out a page is delegated to the so called swap out thread. The pager server 
itself only swaps in pages or issues swap out order. Swap orders are delivered from the pager server to the 
swap out thread using a synchronised queue. Pages residing within the swap out queue have to be handled 

4 Virtual page number (Virtual address without the page offset bits)
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specially. If they are referenced before they are actually swapped out by the swap out thread they are later 
reinserted into the page queue instead of swapping them out.

4 Process Subsystem
The  Process  subsystem  of  SOS  the  basic  functions  process_create,  process_delete,  process_wait, 
process_wait_2,  process_status,  my_id,  thread_create,  thread_delete,  thread_wait,  thread_wait_2 and 
my_thread_id. These functions are an extended set of deliverables for the SOS process management. The 
extensions are kernel level threads and exit codes for processes and threads. The functions are implemented 
within the statically linked SOS-library. They are implemented using specific task server system calls.  This 
chapter is further divided into an overview and detailed design descriptions.

4.1 Overview

A process (or task) is designed within SOS to represent a virtual address space and to be a container for a 
collection of threads running within this virtual address space. The address space is divided into a region 
containing the executable  binary  including its  global  data,  a  region to  map memory  pages  from other 
processes, a region for the heap and finally a region for every threads stack. 

To run code within the process a new thread has to be started. The user may start as many threads within 
the process as he would like (up to the limit of available thread ids).

Illustration 3 shows the relation between processes and threads as described above. Be aware that processes 
are semantically different inside SOS to what they appear to be when looking at the process_create system 
call. The differentiation between process and threads running within the process allow SOS to implement 
kernel level threads quite easily.

SOS Andreas Kägi, Christian Oberholzer SS08

Illustration 3: relationship between processes and threads
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4.2 Clean-up Thread

Whenever a process is killed the operating system has to clean up some resources like frames allocated to 
the process or files opened (and not yet closed) for the process. The clean-up thread is used for this purpose. 
Whenever a process is killed, the task server enqueues a clean-up action to be processed by the clean-up 
thread.

Currently the clean-up thread only frees frames allocated to the deleted process.

4.3 Processes

For each process the task server allocates a new structure and links it into a global linked list of processes. 
The process structure is

The fields are

Field Name Usage

pid SOS Process Id

is_paged Flag indicating if this is a non-swapped or swapped process. This flag indicates which pager is 
later assigned to any thread within this process.

first_thread_id Next process local thread id to assign to a new thread created within the process.

free_thread_ids A list of currently free process local thread ids.

associated_values A hashtable containing the process local storage. If the user wants to associate some 
information with the process this information is stored within this table.

exec_name Name of the executable binary mapped into this process.

page_count The number of pages currently occupied by the process.

wait_event Any thread executing process_wait waits for the process using this event.

entry_point Pointer to the processes entry point.

text_address, text_size, 
rodata_address, rodata_size,
data_address, data_size,
bss_address, bss_size

These fields store information about the layout of this processes executable binary.

first_thread, last_thread Linked list of threads contained within the process
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struct sos_taskserver_process {
sos_pid_t pid;
L4_Word_t is_paged;
L4_Word_t first_thread_id;
L4_Word_t current_thread_id;
sos_vector_t free_thread_ids;
sos_hashtable_t associated_values;
char* exec_name;
L4_Word_t page_count;
sos_event_t wait_event;
L4_Word_t entry_point;
L4_Word_t text_address;
L4_Word_t text_size;
L4_Word_t rodata_address;
L4_Word_t rodata_size;
L4_Word_t data_address;
L4_Word_t data_size;
L4_Word_t bss_address;
L4_Word_t bss_size;
// double linked list of all threads contained within this task
sos_taskserver_thread_t* first_thread;
sos_taskserver_thread_t* last_thread;
// links to prev/next task in global tasklist
sos_taskserver_process_t* next_task;
sos_taskserver_process_t* prev_task;

};
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Field Name Usage

next_task, prev_task Links to the previous respectively next process within the global process list.

 

The system calls to manipulate processes are:

sos_taskserver_process_create

sos_taskserver_process_create_paged

sos_taskserver_process_nonpaged

sos_taskserver_process_kill

sos_taskserver_process_get_wait_event

sos_taskserver_process_get_id

sos_taskserver_process_ls_store

sos_taskserver_process_ls_lookup

sos_taskserver_process_ls_delete

sos_taskserver_process_set_binary_layout

sos_taskserver_process_get_binary_layout

4.4 Threads

SOS  describes  every  runnable  entity  within  the  environment  using  a  thread  structure.  The  thread  is 
embedded within a process as desccribed above. The thread structure is

The fields are

Field Name Usage

task_info Pointer to the process description of the process owning this thread

tid SOS thread id

local_thread_id Local thread id. This id is zero based and only valid within the process context. 

l4_thread_id The L4 thread id given to the L4 kernel.

associated_values A hashtable containing the thread local storage. If the user wants to associate some 
information with the thread this information is stored within this table.

wait_event Any thread executing thread_wait waits for the thread using this event.

next_thread, prev_thread Links to the previous respectively next thread within the process thread list.

4.5 L4 Thread Id

L4 thread ids are composed of two parts. One part is the global id and the other part is a version field. The 
task server manages global ids for SOS. It also misuses the version field to store the local thread id within 
that field. The local id is needed to calculate a thread's stack position.
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struct sos_taskserver_thread {
sos_taskserver_process_t* task_info;
sos_tid_t tid;
L4_Word_t local_thread_id;
L4_ThreadId_t l4_thread_id;
sos_hashtable_t associated_values;
sos_event_t wait_event;
// links to prev/next thread in tasks threadlist
sos_taskserver_thread_t* next_thread;
sos_taskserver_thread_t* prev_thread;

}
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5 Loading Binary Fi les using the Binary Server
When creating a new process, SOS has to ensure that the corresponding code and data segments from the 
ELF file are mapped into the virtual address space of the new process at the correct addresses. However, SOS 
allows creating an empty process with no threads in them (sos_taskserver_process_create).  Thus, it is 
easiest to let an external server do the work of loading and mapping the segments. This is the task of the 
binary server.

A client syscall process_create performs the following steps:

1. It creates an empty process using the syscall sos_taskserver_process_create.

2. It loads the binary into the binary server using the syscall sos_binaryserver_load_binary. 

3. The binary layout returned by the binary server is reported to the taskserver.

4. A thread is created (and started) within this process: sos_taskserver_tread_create.

The binary server is only responsible for step 2: It is given the name of an ELF binary and in turn has to report 
back the layout of it (the start address and size of the code and data segments). First, it opens the file, 
determines its size and allocates (private) memory for it. It then loads it into its private memory (using libelf) 
and stores a reference to this loaded binary in an associative array (key = process id). Finally, it reports back 
the desired layout information.

Later on, when the thread reads from its code section for the first time and thus triggers a page fault to the 
swapping pager, the pager instructs the binary server to move the code and data segments into the faulting 
address space: sos_binaryserver_move_to_l4_addr_space.

The binary server looks up the binary for the given process (from the associative array). It then maps the code 
and data segments of the client address space into its own address space (sos_map_safe) and copies the 
segments to the target location.

6 I/O Subsystem
The I/O subsystem of SOS is built in a POSIX-like style: It provides the familiar functions open, close, read and 
write to access and modify files. All of the client I/O functions are synchronous, blocking operations.

open returns a file descriptor, a small non-negative integer, that can be used in subsequent I/O calls, like read 
or write. A file descriptor is an indirect index into the system-wide table of open files (OFT). File descriptors 
and the open files table are both managed by the central component of the IO subsystem: the virtual file 
server.

The virtual file server is also the component that implements the above mentioned client I/O interface (see 
Appendix for details), namely:

sos_vfs_open, sos_vfs_close

sos_vfs_read, sos_vfs_write

sos_vfs_seek, sos_vfs_tell

sos_vfs_dirent

sos_vfs_stat

Moreover, the virtual file server provides a second interface for implementors of a particular file system:

sos_vfs_add_implementor

sos_vfs_remove_implementor

Thus the virtual file server maintains a list of implementors. It then assigns an implementor to each opened 
file to which it delegates all client requests that operate on that particular file. The assignment is done by 
sending  a  can_handle_file IPC  (containing  the  file  name)  to  every  known  implementor.  The  first 
implementor returning true is taken as the file's implementor.
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6.1 I/O dispatching using the virtual file server

The functioning of the virtual file server is best explained by example: 

Illustration 4: Example dispatching of a read syscall

The example illustrates the dispatching of a read system call issued by a client thread. It assumes that the 
client has already opened the file beforehand and holds a valid file descriptor (fd) for the corresponding file. 
Some noteworthy comments are:

The  virtual  file  server  passes  a  fildes_info_t  struct to  the  implementor.  This  allows  the 
implementor to store some process-specific information needed to handle the file with the file 
descriptor. The info struct also contains the global open file index allowing the implementor to 
uniquely refer to the file denoted by the descriptor.

Note  how  the  synchronous  blocking  I/O  client  interface  (POSIX  style)  is  converted  into 
asynchronous operations by the virtual file server: Its top thread delegates the client read request 
to the NFS server but sends no reply to the client. Instead, the reply is generated asynchronously 
by the NFS server that passes it to the virtual file server (bottom thread!) which in turn passes it to 
the client. This requires that

the client thread id is passed to the implementor and back from the implementor to the 
virtual file server.5

the client threads sends its IPC to the top thread (IPC send) and receives the reply from the 
bottom thread (closed IPC receive) instead of a normal IPC call. 

6.2 File descriptors and the open files table

5 One could instead share the client thread ids in an associative array in the virtual file server. Beside an 
additional managing overhead this would result in additional synchronisation between the two threads of 
the virtual file server.
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Illustration 5: File descriptors table and OFT

File descriptors are indirect indices into the open files table (OFT). Indirect meaning that the file descriptor is 
an index into the process-local file descriptors table that contains the global index into the OFT. The file 
descriptors  table  is  maintained  by  the  virtual  file  server  for  every  process.  Currently,  it  is  of  fixed  size 
(PROCESS_MAX_FILES, defined in <sosh.h>). It resides in the virtual memory of the virtual file server. It is linked 
to  the  process  by  means  of  the  process-specific  local  storage  area  provided  by  the  task  server 
(sos_taskserver_ thread_ls_store).

The OFT is a system-wide table storing information for all opened files. It resides in the virtual memory of the 
virtual file server and is shared between its top and bottom threads. The OFT is manipulated by the following 
operations:

Operation Location Description

open Top thread Creates a new OFT entry if none is present for the corresponding file, otherwise it 
increments the reference count.

read/write Top thread Look up the implementor tid and delegating the call to the implementor.

add_implementor Bottom thread Sets the implementor tid of the OFT entries std„stdout“ and „stderr“ to the new 
implementor if this is an stdio_handler.

remove_implementor Bottom thread Sets the implementor tid to 0 for any OFT entry having referenced the implementor to 
remove.

completed_open Bottom thread If the open failed and the reference count of the OFT entry is 0, it is removed.

completed_close Bottom thread If the reference count of the OFT entry is 0, it is removed.

All operations on the OFT are synchronised since the OFT is accessed by multiple threads.

The OFT is implemented using three data structures:

a hash table mapping file names to global indices

a resizable vector (array) representing the actual open files table

a helper stack with free global indices

6.3 Handling of stdin, stdout and stderr

In SOS the standard file descriptors are named stdin_fd (fd 0), stdout_fd (fd 1) and stderr_fd (fd 2).

For  stdout_fd an  entry  "stdout" is  always  present  in  the OFT.  Initially,  this  entry  references  a  dummy 
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implementor (stdout_null) that discards all output. As soon as an stdio-handling implementor is registered 
with the virtual file server, the implementor tid of the "stdout" entry is updated.

stdin_fd is currently not supported. Instead, a client process has to open the file "console" explicitly and use 
the returned file descriptor for subsequent read syscalls.

stderr_fd is currently not supported either.

Both  stdin_fd and  stderr_fd were  not  part  of  the  original  libsos/sos.h  interface  and  were  planned 
extensions that did not made it into SOS.

7 Networking Subsystem
The networking subsystem consists mainly of the IXP server and the NFS server. As mentioned within the 
chapter about the different SOS servers, there is no clear line to draw between the tasks of the NFS server 
and the IXP server due to the fact that it was impossible to factor the NFS library out of the IXP server. File  
handling is covered by the chapter about the I/O subsystem. Therefore this chapter presents only two special 
topics.

7.1 Migrate the Intel networking driver to a virtual address space 

To port the Intel networking driver the following things need to be considered:

Changes have to be done inside the folder ixp_osal/os/l4aos.

Privileged calls to L4 have to be changed and delegated to the root server. The L4 calls typically 
fail silently so care has to be taken to exchange all of them.

Finally the driver assumes a 1:1 physical to virtual memory mapping to do DMA transfers. This 
leaves two choices. Either memory for DMA transfer may be allocated directly from the root server 
still  using  1:1  mapping  like  it  is  done  within   SOS  or  IX_OSAL_OS_MMU_VIRT_TO_PHYS and 
IX_OSAL_OS_MMU_PHYS_TO_VIRT in  IxOsalOs.h have  to  be  changed  to  implement  the  correct 
address translation.

7.2 Splitting large read calls

Since the lwip stack is really simple it 
does  not  support  splitting  packets. 
Therefore  the  IXP  server  may  issue 
only read or write requests filling at 
most  one  packet  at  the  time.  To 
limit the user to read at most blocks 
of  packet  size  limits  the read/write 
throughput  to  a  few  kilobytes  per 
second. This is clearly unsatisfactory. 

Therefore  SOS  implements  an 
optimization for large read requests. 
If the user process requests to read 
more bytes than a packet can hold 
the request is split into several read 
fragments  (as  shown  in  illustration 
6). For each fragment the IXP server 
issues a read call to the NFS server. 
Within the callback function the IXP 
server  fills  the  buffer  from 
successfully  read  fragments  and 
repeats read calls for failed nfs_read 
calls.  After  the  last  fragment  is 
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Illustration 6: Split concept
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successfully completed, the call will return.
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Chapter I I I : Limitations
This section describes some shortcomings of the current SOS system. The limitations are loosely ordered by 
importance.

Limitation Description

Missing priviledges Currently, all SOS server threads have full access to the root server. That is, they can call any 
priviledges operation that the root server exposes as a syscall. This is clearly unsatisfactory. Instead, 
SOS should have some privilege management system that give certain restricted priviledge to the 
servers and enforces them to not do other unallowed priviledged calls.

Overburden IXP server The IXP server currently contains code for the NIC driver (ixp_osal), the IP stack (lwip), NFS and the 
serial library.
The goal would be to split it, such that the IP stack resided in its separate server, independent of any 
network device. 
Moreover, the NFS and serial libaries should be modified such that they communicate with the IP 
stack server via IPC messages (and not with the IXP server).

ixp_osal DMA memory hack Currently, ixp_osal relies on the availability of physical memory (consequtive memory) of arbitrary 
size. This resulted in a special treatment in the root server: 
sos_rootserver_dma_malloc_hack

Exit codes and process_wait It would be clearly desirable, if process_wait returned the exit code of the process's main 
function. For this purpose, SOS provides process_wait_2 that returns the exit code. The problem 
arises when the called process terminates before the calling process can initiate process_wait_2. 
In this case, the exit code is lost. With the current implementation it is not possible to resolve this 
issue, so a new reimplementation would be necessary.

Maximum file name length In SOS, the length of a file name is restricted to be smaller or equal to MAX_FILENAME_LENGTH. 
This constant is defined in libsos/vfileserver.h

Maximum number of entries in 
the 
file descriptor table

The size of the file descriptor table is currently limited. No more than PROCESS_MAX_FILES 
(libsos/sos.h) can be opened at the same time by any process. 

1.1 Bugs

This section describes some unresolved bugs within SOS or libraries that SOS depends on.

Bug Description

Too many parallel reads If too many parallel reads are done simultaneously, the lwip stack runs of out memory:

I

Assertion "mem_free: mem->used" failed at line 284 in libs/lwip/core/mem.c

No cleanup in 
remove_implementor 
(vfileserver.c)

When an implementor is removed from the virtual file server, all files having this implementor 
associated should by invalidated in some way, such that subsequent read/write calls will fail. 
Alternatively another implementor that is able to handle the files could be associated to them.

Correct stderr/stdin handling The virtual file server should correctly handle stderr and stdin. stderr should be a valid file 
descriptor for any process (the corresponding file is automatically opened), whereas stdin 
should only be valid for the process having opened the file “console” in read mode.

Virtual file server memory leak The virtual file server has to free the file descriptors table for a process after it has terminated. It 
should also close any files that remained open for the process. The task server would have to 
notify the virtual file server in its cleanup thread. As the reference to the file descriptors table is 
stored in the task local storage of the corresponding process, the taskserver would have to 
introduce some "zombie" mechanism instead of directly destroying the process.

Too large bss section When the bss section of an ELF binary is too large, SOS fails correctly running the code of this 
binary.

IPC/name server problem Spurious error with registering/querying the name server: Sometimes incomplete IPC messages 
were fabricated that contained only part of the name (string) to register/query. Apparently, the 
problem was not the actual send operation of the IPC but the L4 message was already 
corrupted when loaded into the message registers, even though the structure 

SOS Andreas Kägi, Christian Oberholzer SS08



Chapter III: Limitations 23

Bug Description

Wrong server configuaration When the server (192.168.0.1) has no running inet daemon or nfs-server, SOS fails to start and 
prints no appropriate error message.

Frame locking/unlocking not done Problems occur whenever the pager server swaps out frames mapped into multiple address 
spaces. In such a case the frame can get freed but still mapped into server address spaces. Thus 
if the frame is assigned to another process the processes data may be overwritten by the invalid 
mapping within the server address space. Even though there is code to handle this case tests 
have proven it to not work properly.
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Chapter IV: Testing
The correctness  of  all  implemented features  is,  as  good as  possible during the short  time available  for 
testing, verified using two different methods. Firstly there is verification functionality built into SOS and 
secondly  there  are  some explicit  test  programs  to  test  SOS.  The following sections  describe  those two 
approaches.

1 Built- In Tests
This  is  done  through  various  verification  methods  executed  during  the  boot  process  and  using  assert 
statements during the code execution. Using lots of assertions to ensure that assumptions about the code 
are correct helped to prevent many bugs. Built-In Tests are

q) sosroot_verification_nameserver (sos/verification.c): This Verification is run after the name server 
has been started. It checks that the name server is working correctly. Namely one can insert a new 
entry, look it up and remove it afterwards.

r) sosroot_verification_localstorage (sos/verification.c): This verification is run after the task server has 
been started. It verifies the availability of process local storage. 

s) sosroot_verification_syncserver (sos/verification.c): This verification is run after the synchronisation 
server has been started. It verifies  the functionality of the two synchronisation primitives used 
within SOS. The event and the mutex structures.

t) hat_test (sos_pagerserver/hat.c): This verification is run after the SOS page table is initialised. It 
verifies that inserting, removing and querying items from the page table properly work.

u) assertions  (sos_timerserver/timerserver.c):  This  verification  asserts  that  the  structs  within  the 
timer server used to represent the timer driver's registers are correctly aligned.

v) sos_test_atomic_assignments  (libs/sos/include/test.c):  This  verification  asserts  that  the  atomic 
assignment functionality (which is written in Assembler) works properly.

w) sos_test_hashtable  (libs/sos/include/test.c):  This  verification  asserts  that  the  iterator  that  is 
implemented for the hash table works properly.

2 Test Programs
Secondly there are some explicit test programs written to verify special features, test that features work, that 
they work together or just that the system works correctly under stress situations. The tests are:

2.1 test_all

The program test_all is an approach to do pseudo-automatic testing. It consists of a set of other programs to 
execute and the expected return codes. It then executes all test programs (one after each other) and collects 
the programs return codes. It then prints a summary of all executions comparing the expected results with 
the actual results.  This test gave the ability to verify that the system still  work as expected after having 
changes and bugfixes. Additionally this test program is another opportunity to do system stress tests. Instead 
of starting the tests sequential the test would have the possibility to start all processes at once and thus 
enable some more system stress testing.

2.2 test_parallel_reads

This test verifies the system to work correctly under the load of lots of parallel large reads. It revealed a bug 
within page mapping algorithm.
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2.3 test_threads

Kernel level threads make it easier to write tests for parallel functionality since only one process (application) 
has to be written and started instead of many. This test verifies that kernel level threads can be started and 
executed as designed within the application programming interface. This test revealed a deadlock problem 
between the timer client server and the timer driver server.

2.4 test_parallel_timestamps

In response to the deadlock problem between the timer servers, this test was introduced. It stresses the timer 
servers heavily by issueing a lot of parallel time stamp requests from multiple threads.

2.5 test_large_read and test_large_alloc

It was feared that terminating a process that is in the middle of a read syscall could be hazardous. These two 
tests were introduced to test that. test_large_read just reads from a large file of the NFS share. At the same 
time test_large_alloc has to be started. It allocates a large array of memory and reads from it. Since for 
debugging purposes a freshly allocated frame is always initialised with all zeroes, test_large_alloc asserts, 
that the data it reads from the large array is all zero. In combination, it can be tested whether terminating a 
process blocking in an active system call leads to corruption of memory.

2.6 test_swapserver

This test verifies  that the pager server correctly swaps out and swaps in frames. It allocates a chunk of 
memory which is bigger than the available amount of physical memory. This buffer gets filled with some 
reconstructible data. It is later verified that still contains the correct data. Through writing to the buffer and 
reading from the buffer, the pager server is forced to swap frames dynamically.

3 Conclusion
With this approach to test SOS it was possible to find and eliminate many bugs. A lot more have been 
prevented through the consisent use of assert statements and the built-in verification functions. Even though 
a lot of bugs have been discovered, the test cases cover only a small part of the overall system. Therefore 
many more tests would be needed to verify the system to work correctly in special situations or under heavy 
load.

SOS Andreas Kägi, Christian Oberholzer SS08


	Chapter I:Overview
	1Design Decisions
	2System Architecture
	3SOS Servers
	3.1Root Server
	3.2Name Server
	3.3Synchronisation Server
	3.4Task Server
	3.5Networking Server (IXP Server)
	3.6Virtual File Server
	3.7Console Server
	3.8NFS Server
	3.9Binary Server
	3.10Pager Server
	3.11Timer Driver Server2
	3.12Timer Client Server3


	Chapter II:System Details
	1Boot Process
	1.1Booting the L4 Kernel (Pistachio)
	1.2Initializing the Root Server
	1.3Creating and Initialising System Servers

	2System Call Dispatching
	3Virtual Memory Management
	3.1Separation of pagers
	3.2Page-Table Structure
	3.3Swapping

	4Process Subsystem
	4.1Overview
	4.2Clean-up Thread
	4.3Processes
	4.4Threads
	4.5L4 Thread Id

	5Loading Binary Files using the Binary Server
	6I/O Subsystem
	6.1I/O dispatching using the virtual file server
	6.2File descriptors and the open files table
	6.3Handling of stdin, stdout and stderr

	7Networking Subsystem
	7.1Migrate the Intel networking driver to a virtual address space 
	7.2Splitting large read calls


	Chapter III:Limitations
	1.1Bugs

	Chapter IV:Testing
	1Built-In Tests
	2Test Programs
	2.1test_all
	2.2test_parallel_reads
	2.3test_threads
	2.4test_parallel_timestamps
	2.5test_large_read and test_large_alloc
	2.6test_swapserver

	3Conclusion


